The quantum NOT gate swaps the state of and , i.e. it maps:As a result, this gate also inverts the probability of measuring 0 or 1, e.g.
- if the old probability of 0 was 0, then it becomes 1
- if the old probability of 0 was 0.2, then it becomes 0.8
Equation 2.
Quantum NOT gate matrix
. List of handbooks open as of 2022 at: www.maths.ox.ac.uk/members/students/undergraduate-courses/teaching-and-learning/handbooks-synopses Kudos, e.g. unlike the physics course of the University of Oxford which paywalled them. 2022 one: www.maths.ox.ac.uk/system/files/attachments/UG%20Handbook%202022.pdf
The Oxford mathematics Moodle has detailed course listings, and most PDFs are not paywalled.
E.g. the 2024 course:
- Year 1: everything seems mandatory:
- Michaelmas Term
- Introduction to University Mathematics
- Introduction to Complex Numbers
- Linear Algebra I
- Analysis I
- Introductory Calculus
- Probability
- Geometry
- Hilary Term
- Trinity Term
- Groups and Group Actions
- Analysis III
- Statistics and Data Analysis
- Constructive Mathematics
- Michaelmas Term
- Year 2:
- Mandatory big courses:
- long options:
- Rings and Modules
- Integration
- Topology
- Differential Equations 2
- Numerical Analysis
- Probability
- Statistics
- Fluids and Waves
- Quantum Theory
- short options
- Number Theory
- Group Theory
- Projective Geometry
- Integral Transforms
- Calculus of Variations
- Graph Theory
- Mathematical Modelling in Biology
- Year 3: pick any 8 courses. Does not say which courses exist in PDF but we can get them from courses.maths.ox.ac.uk/course/index.php?categoryid=814 of the Oxford mathematics Moodle:
- Michaelmas
- B1.1 Logic (2024-25)
- B2.1 Introduction to Representation Theory (2024-25)
- B3.2 Geometry of Surfaces (2024-25)
- B3.5 Topology and Groups (2024-25)
- B4.1 Functional Analysis I (2024-25)
- B5.2 Applied Partial Differential Equations (2024-25)
- B5.3 Viscous Flow (2024-25)
- B5.5 Further Mathematical Biology (2024-25)
- B6.1 Numerical Solution of Partial Differential Equations (2024-25)
- B6.3 Integer Programming (2024-25)
- B7.1 Classical Mechanics (2024-25)
- B8.1 Probability, Measure and Martingales (2024-25)
- B8.4 Information Theory (2024-25)
- B8.5 Graph Theory (2024-25)
- BO1.1 History of Mathematics (2024-25)
- BOE Other Mathematical Extended Essay (2024-25)
- BSP Structured Projects (2024-25)
- Hilary
- B1.2 Set Theory (2024-25)
- B2.2 Commutative Algebra (2024-25)
- B2.3 Lie Algebras (2024-25)
- B3.1 Galois Theory (2024-25)
- B3.3 Algebraic Curves (2024-25)
- B3.4 Algebraic Number Theory (2024-25)
- B4.3 Distribution Theory (2024-25)
- B4.2 Functional Analysis II (2024-25)
- B5.1 Stochastic Modelling of Biological Processes (2024-25)
- B5.4 Waves and Compressible Flow (2024-25)
- B5.6 Nonlinear Dynamics, Bifurcations and Chaos (2024-25)
- B6.2 Optimisation for Data Science (2024-25)
- B7.2 Electromagnetism (2024-25)
- B7.3 Further Quantum Theory (2024-25)
- B8.2 Continuous Martingales and Stochastic Calculus (2024-25)
- B8.3 Mathematical Models of Financial Derivatives (2024-25)
- B8.6 High Dimensional Probability (2024-25)
- SB3.1 Applied Probability (2024-25)
- BO1.1 History of Mathematics (2024-25)
- BOE Other Mathematical Extended Essay (2024-25)
- BSP Structured Projects (2024-25)
- Michaelmas
- Year 4: pick any 8 courses (up to 10 if you're crazy). Does not say which courses exist in PDF but we can get them from courses.maths.ox.ac.uk/course/index.php?categoryid=814 of the Oxford mathematics Moodle:
- Michaelmas
- C1.1 Model Theory (2024-25)
- C1.4 Axiomatic Set Theory (2024-25)
- C2.2 Homological Algebra (2024-25)
- C2.4 Infinite Groups (2024-25)
- C2.7 Category Theory (2024-25)
- C3.1 Algebraic Topology (2024-25)
- C3.3 Differentiable Manifolds (2024-25)
- C3.4 Algebraic Geometry (2024-25)
- C3.7 Elliptic Curves (2024-25)
- C3.8 Analytic Number Theory (2024-25)
- C4.1 Further Functional Analysis (2024-25)
- C4.3 Functional Analytic Methods for PDEs (2024-25)
- C5.2 Elasticity and Plasticity (2024-25)
- C5.5 Perturbation Methods (2024-25)
- C5.7 Topics in Fluid Mechanics (2024-25)
- C5.11 Mathematical Geoscience (2024-25)
- C5.12 Mathematical Physiology (2024-25)
- C6.1 Numerical Linear Algebra (2024-25)
- C6.5 Theories of Deep Learning (2024-25)
- C7.1 Theoretical Physics (C6) (2024-25)
- C7.5 General Relativity I (2024-25)
- C8.1 Stochastic Differential Equations (2024-25)
- C8.3 Combinatorics (2024-25)
- CCD Dissertations on a Mathematical Topic (2024-25)
- COD Dissertations on the History of Mathematics (2024-25)
- Hilary
- C1.2 Gödel's Incompleteness Theorems (2024-25)
- C1.3 Analytic Topology (2024-25)
- C2.3 Representation Theory of Semisimple Lie Algebras (2024-25)
- C2.5 Non-Commutative Rings (2024-25)
- C2.6 Introduction to Schemes (2024-25)
- C3.2 Geometric Group Theory (2024-25)
- C3.5 Lie Groups (2024-25)
- C3.6 Modular Forms (2024-25)
- C3.9 Computational Algebraic Topology (2024-25)
- C3.10 Additive Combinatorics (2024-25)
- C3.11 Riemannian Geometry (2024-25)
- C3.12 Low-Dimensional Topology and Knot Theory (2024-25)
- C4.6 Fixed Point Methods for Nonlinear PDEs (2024-25)
- C4.9 Optimal Transport & Partial Differential Equations (2024-25)
- C5.1 Solid Mechanics (2024-25)
- C5.4 Networks (2024-25)
- C5.6 Applied Complex Variables (2024-25)
- C6.2 Continuous Optimisation (2024-25)
- C6.4 Finite Element Method for PDEs (2024-25)
- C7.1 Theoretical Physics (C6) (2024-25)
- C7.4 Introduction to Quantum Information (2024-25)
- C7.6 General Relativity II (2024-25)
- C7.7 Random Matrix Theory (2024-25)
- C8.2 Stochastic Analysis and PDEs (2024-25)
- C8.4 Probabilistic Combinatorics (2024-25)
- C8.7 Optimal Control (2024-25)
- CCD Dissertations on a Mathematical Topic (2024-25)
- COD Dissertations on the History of Mathematics (2024-25)
- Michaelmas
The most common way to construct multi-qubit gates is to use single-qubit gates as part of a controlled quantum gate.
Domain list only, no IPs and no dates. We haven't been able to extract anything of interest from this source so far.
Domain hit count when we were at 69 hits: only 9, some of which had been since reused. Likely their data collection did not cover the dates of interest.
The first two that you should study are:
Appears to be an unsolved physics problem. TODO why? Don't they all fit into the Standard Model already? So why is strong force less unified with electroweak, than electromagnetic + weak is unified in electroweak?
The Eighth Day of Creation has a related quote:
In a conversation a few weeks earlier at the faculty club of the Massachusetts Institute of Technology, a couple of biologists had speculated whether Pauling, whose recent popular book on the benefits to health and sanity of massive doses of vitamin C was stacked in display near the entrance of the M.I.T. bookstore, was showing signs of what one of the men called "old scientist's disease" - which they defined as what happens to great men when they grow beyond the psychological reach of the salutary system by which scientists blow the whistle on one another's mistakes.
The Nobel Prize Winners With Crazy Theories by Qxir
. Source. Gilberto is definitely the most psychedelic/tribal one of the The Holy Trinity of popular Brazilian music, though he also has a boyish quality to his soul.
He is also perhaps the one that impresses Ciro Santilli the most, at times he can't help but feel:
OMG how the hell did he come up with that?!
Ciro's word of caution for 2019 aspiring system programmers: Should you waste your life with systems programming?
This is basically a direct consequence of backward design.
The higher the level you can operate at, the better.
The ideal level to operate at, and one of humankind's greatest ambitions is "AGI, make me money", the highest possible level.
Only go down a level when it seems necessary.
The opposite of quasiparticle, see notaby: quasiparticles vs elementary particles.
Unlisted articles are being shown, click here to show only listed articles.


