HP Blade Server by Brian Kirsch (2013)
Source. Featuring an HP DL380 blade server, presumably an older model of this series: buy.hpe.com/uk/en/servers/proliant-dl-servers/proliant-dl300-servers/proliant-dl380-server/hpe-proliant-dl380-gen10-server/p/1010026818.
In the video we can see that it contains RAM, disk storage, we are told about two CPUs, and networking interfaces, so it is a complete computer on its own. He also explains that unlike typical rack servers, each blade unit does not have its own coolers and power supply related hardware, which goes instead on the chassis.
How ASML Won Lithography by Asianometry (2021)
Source. First there were dominant Elmer and Geophysics Corporation of America dominating the market.
Then a Japanese government project managed to make Nikon and Canon Inc. catch up, and in 1989, when Ciro Santilli was born, they had 70% of the market.
youtu.be/SB8qIO6Ti_M?t=240 In 1995, ASML had reached 25% market share. Then it managed the folloging faster than the others:
- TwinScan, reached 50% market share in 2002
- Immersion litography
- EUV. There was a big split between EUV vs particle beams, and ASML bet on EUV and EUV won.
- youtu.be/SB8qIO6Ti_M?t=459 they have an insane number of software engineers working on software for the machine, which is insanely complex. They are big on UML.
- youtu.be/SB8qIO6Ti_M?t=634 they use ZEISS optics, don't develop their own. More precisely, the majority owned subsidiary Carl Zeiss SMT.
- youtu.be/SB8qIO6Ti_M?t=703 IMEC collaborations worked well. Notably the ASML/Philips/ZEISS trinity
- www.youtube.com/watch?v=XLNsYecX_2Q ASML: Chip making goes vacuum with EUV (2009) Self promotional video, some good shots of their buildings.
Where derivation == "intuitive routes", since a "law of physics" cannot be derived, only observed right or wrong.
TODO also comment on why are complex numbers used in the Schrodinger equation?.
Some approaches:
- en.wikipedia.org/w/index.php?title=Schr%C3%B6dinger_equation&oldid=964460597#Derivation: holy crap, this just goes all in into a Lie group approach, nice
- Richard Feynman's derivation of the Schrodinger equation:
- physics.stackexchange.com/questions/263990/feynmans-derivation-of-the-schrödinger-equation
- www.youtube.com/watch?v=xQ1d0M19LsM "Class Y. Feynman's Derivation of the Schrödinger Equation" by doctorphys (2020)
- www.youtube.com/watch?v=zC_gYfAqjZY&list=PL54DF0652B30D99A4&index=53 "I5. Derivation of the Schrödinger Equation" by doctorphys
Converts RNA to DNA, i.e. the inverse of transcription. Found in viruses such as Retrovirus, which includes e.g. HIV.
As well put by Wikipedia, a radio receiver has to perform three functions on the signal from the antenna:
- filtering, so you can tune the station you care about. This filters based on the frequency of the carrier wave you want. I.e. you use a bandpass filter.
- amplification: otherwise you won't be able to hear anything if the emitter is too far away
- demodulation: this means decoding the signal based on whatever way it was encoded, notably e.g. AM/FM
Just like as for classic gates, we would like to be able to select quantum computer physical implementations that can represent one or a few gates that can be used to create any quantum circuit.
Unfortunately, in the case of quantum circuits this is obviously impossible, since the space of N x N unitary matrices is infinite and continuous.
Therefore, when we say that certain gates form a "set of universal quantum gates", we actually mean that "any unitary matrix can be approximated to arbitrary precision with enough of these gates".
Or if you like fancy Mathy words, you can say that the subgroup of the unitary group generated by our basic gate set is a dense subset of the unitary group.
Unlisted articles are being shown, click here to show only listed articles.
