Spontaneous emission defies causality by
Ciro Santilli 35 Updated 2025-03-08 +Created 1970-01-01
TODO understand better, mentioned e.g. at Subtle is the Lord by Abraham Pais (1982) page 20, and is something that Einstein worked on.
Why is the spin of the electron half? by
Ciro Santilli 35 Updated 2025-03-08 +Created 1970-01-01
More interestingly, how is that implied by the Stern-Gerlach experiment?
physics.stackexchange.com/questions/266359/when-we-say-electron-spin-is-1-2-what-exactly-does-it-mean-1-2-of-what/266371#266371 suggests that half could either mean:
- at limit of large
l
for the Schrödinger equation solution for the hydrogen atom the difference between each angular momentum is twice that of the eletron's spin. Not very satisfactory. - it comes directly out of the Dirac equation. This is satisfactory. :-)
Term symbols for carbon ground state by
Ciro Santilli 35 Updated 2025-03-08 +Created 1970-01-01
This example covered for example at Video 1. "Term Symbols Example 1 by TMP Chem (2015)".
Carbon has electronic structure 1s2 2s2 2p2.
For term symbols we only care about unfilled layers, because in every filled layer the total z angular momentum is 0, as one electron necessarily cancels out each other:
- magnetic quantum number varies from -l to +l, each with z angular momentum to and so each cancels the other out
- spin quantum number is either + or minus half, and so each pair of electron cancels the other out
So in this case, we only care about the 2 electrons in 2p2. Let's list out all possible ways in which the 2p2 electrons can be.
There are 3 p orbitals, with three different magnetic quantum numbers, each representing a different possible z quantum angular momentum.
We are going to distribute 2 electrons with 2 different spins across them. All the possible distributions that don't violate the Pauli exclusion principle are:
m_l +1 0 -1 m_L m_S
u_ u_ __ 1 1
u_ __ u_ 0 1
__ u_ u_ -1 1
d_ d_ __ 1 -1
d_ __ d_ 0 -1
__ d_ d_ -1 -1
u_ d_ __ 1 0
d_ u_ __ 1 0
u_ __ d_ 0 0
d_ __ u_ 0 0
__ u_ d_ -1 0
__ d_ u_ -1 0
ud __ __ 2 0
__ ud __ 0 0
__ __ ud -2 0
where:
m_l
is , the magnetic quantum number of each electron. Remember that this gives a orbital (non-spin) quantum angular momentum of to each such electronm_L
with a capital L is the sum of the of each electronm_S
with a capital S is the sum of the spin angular momentum of each electron
For example, on the first line:we have:and so the sum of them has angular momentum . So the value of is 1, we just omit the .
m_l +1 0 -1 m_L m_S
u_ u_ __ 1 1
- one electron with , and so angular momentum
- one electron with , and so angular momentum 0
TODO now I don't understand the logic behind the next steps... I understand how to mechanically do them, but what do they mean? Can you determine the term symbol for individual microstates at all? Or do you have to group them to get the answer? Since there are multiple choices in some steps, it appears that you can't assign a specific term symbol to an individual microstate. And it has something to do with the Slater determinant. The previous lecture mentions it: www.youtube.com/watch?v=7_8n1TS-8Y0 more precisely youtu.be/7_8n1TS-8Y0?t=2268 about carbon.
youtu.be/DAgEmLWpYjs?t=2675 mentions that is not allowed because it would imply , which would be a state
uu __ __
which violates the Pauli exclusion principle, and so was not listed on our list of 15 states.He then goes for and mentions:and so that corresponds to states on our list:Note that for some we had a two choices, so we just pick any one of them and tick them off off from the table, which now looks like:
- S = 1 so can only be 0
- L = 2 (D) so ranges in -2, -1, 0, 1, 2
ud __ __ 2 0
u_ d_ __ 1 0
u_ __ d_ 0 0
__ u_ d_ -1 0
__ __ ud -2 0
+1 0 -1 m_L m_S
u_ u_ __ 1 1
u_ __ u_ 0 1
__ u_ u_ -1 1
d_ d_ __ 1 -1
d_ __ d_ 0 -1
__ d_ d_ -1 -1
d_ u_ __ 1 0
d_ __ u_ 0 0
__ d_ u_ -1 0
__ ud __ 0 0
Then for the choices are:so we have 9 possibilities for both together. We again verify that 9 such states are left matching those criteria, and tick them off, and so on.
- S = 2 so is either -1, 0 or 1
- L = 1 (P) so ranges in -1, 0, 1
For the , we have two electrons with spin up. The angular momentum of each electron is , and so given that we have two, the total is , so again we omit and is 1.
Ciro Santilli is against all affirmative action, except for one: giving amazing free eduction to the poor.
Notably, Ciro is against university entry quotas.
The basic experiment for a photonic quantum computer.
Can be achieved in two ways it seems:
- macroscopic beam splitter and optical table
- photolithography
Animation of Hong-Ou-Mandel Effect on a silicon like structure by Quantum Light University of Sheffield (2014): www.youtube.com/watch?v=ld2r2IMt4vg No maths, but gives the result clear: the photons are always on the same side.
Quantum Computing with Light by Quantum Light University of Sheffield (2015)
Source. Animation of in-silicon single photon device with brief description of emitting and receiving elements. Mentions:- quantum dot source. TODO how do you produce identical photons from two separate quantum dots? See also: quantum dot single photon source.
- superconducting nanowire detector. So the device has to be cooled then? Video "Jeremy O'Brien: "Quantum Technologies" by GoogleTechTalks (2014)" youtube.com/watch?v=7wCBkAQYBZA&t=2497 however says that semiconducting devices can also be used
Quantum Optics - Beam splitter in quantum optics by Alain Aspect (2017)
Source. More theoretical approach.Building a Quantum Computer Out of Light by whentheappledrops (2014)
Source. Yada yada yada, then at youtu.be/ofg335d3BJ8?t=341 shows optical table and it starts being worth it. Jacques Carolan from the University of Bristol goes through their setup which injects 5 photons into a 21-way experiment.Genes list: www.ncbi.nlm.nih.gov/nuccore/MN908947.3
Some are named after the encoded protein. Others that are not as clean are just orfXXX for open reading frame XXX.
Basically a synonym for second quantization.
tx 243dea31863e94dc2f293489db02452e9bde279df1ab7feb6e456a4af672156a contains another upload script. The help reads:
Publish text in the blockchain, suitably padded for easy recovery with strings
Experimental setup to observe radiation pressure in the laboratory.
Noisy intermediate-scale quantum era by
Ciro Santilli 35 Updated 2025-03-08 +Created 1970-01-01
Era of quantum computing before we reach physical errors small enough to do perfect quantum error correction as demonstrated by the quantum threshold theorem.
Relativistic Quantum Mechanics by Apoorva D Patel (2014) by
Ciro Santilli 35 Updated 2025-03-08 +Created 1970-01-01
45 1 hour lessons. The Indian traditional music opening is the best.
Quantum Field Theory lecture notes by David Tong (2007) by
Ciro Santilli 35 Updated 2025-03-08 +Created 1970-01-01
Author: David Tong.
Number of pages circa 2021: 155.
It should also be noted that those notes are still being updated circa 2020 much after original publication. But without Git to track the LaTeX, it is hard to be sure how much. We'll get there one day, one day.
Some quotes self describing the work:
- Perhaps for this reason Ciro Santilli was not able to get as much as he'd out of those notes either. This is not to say that the notes are bad, just not what Ciro needed, much like P&S:This is a very clear and comprehensive book, covering everything in this course at the right level. To a large extent, our course will follow the first section of this book.
In this course we will not discuss path integral methods, and focus instead on canonical quantization.
A follow up course in the University of Cambridge seems to be the "Advanced QFT course" (AQFT, Quantum field theory II) by David Skinner: www.damtp.cam.ac.uk/user/dbs26/AQFT.html
Quantum field theory in a nutshell by Anthony Zee (2010) by
Ciro Santilli 35 Updated 2025-03-08 +Created 1970-01-01
ISBN-13: 978-0691140346
lecture 1 mentions that this book is quick and dirty, as one might guess from the title. Ciro Santilli thinks he's gonna like this one.
First edition: from 2003, www.amazon.com/dp/0691010196, ISBN-13: 978-0691010199.
Summary:
Unlisted articles are being shown, click here to show only listed articles.