Unit of electric current.
Affected by the ampere in the 2019 redefinition of the SI base units.
- the basis for the most promising 2019 quantum computing implementation: superconducting quantum computer
- Josephson voltage standard: the most practical/precise Volt standard, which motivated the definition of the ampere in the 2019 redefinition of the SI base units
- SQUID devices, which are:
- very precise magnetometer
- the basis for superconducting quantum computers
The most practical/precise volt standard.
It motivated the definition of the ampere in the 2019 redefinition of the SI base units
The wiki page en.wikipedia.org/wiki/Josephson_voltage_standard contains amazing schematics of the device, apparently made by the US Government.
Schematic of a typical Josephson voltage standard chip
. Source. The evolution of voltage metrology to the latest generation of JVSs by Alain Rüfenacht
. Source. Talk given in 2023. The speaker is from NIST, and the talk was hosted by the BIPM. Fantastic talk.- youtu.be/VoRab8U2eS0?t=354 the desired output voltage is 10V
- youtu.be/VoRab8U2eS0?t=475 lists the three most commonly used 10V implementations currently:
Technical aspects of realizing the DC volt in the laboratory with a JVS by Stéphane Solve
. Source. Talk given in 2023. The speaker is from BIPM, and the talk was hosted by the BIPM. Fantastic talk.- youtu.be/6pgGNJby1lw?t=296 gives the experimental setup used to compare two different references. Notably it involves a nanovoltmeter
Quantum version of the Hall effect.
As you increase the magnetic field, you can see the Hall resistance increase, but it does so in discrete steps.
Gotta understand this because the name sounds cool. Maybe also because it is used to define the fucking ampere in the 2019 redefinition of the SI base units.
At least the experiment description itself is easy to understand. The hard part is the physical theory behind.
TODO experiment video.
The effect can be separated into two modes:
- Integer quantum Hall effect: easier to explain from first principles
- Fractional quantum Hall effect: harder to explain from first principles
- Fractional quantum Hall effect for : 1998 Nobel Prize in Physics
- Fractional quantum Hall effect for : one of the most important unsolved physics problems as of 2023