Refinement of the Bohr model that starts to take quantum angular momentum into account in order to explain missing lines that would have been otherwise observed TODO specific example of such line.
They are not observe because they would violate the conservation of angular momentum.
Introduces the azimuthal quantum number and magnetic quantum number.
TODO confirm year and paper, Wikipedia points to: zenodo.org/record/1424309#.yotqe3xmjhe
The knowledge that light is polarized precedes the knowledge of the existence of the photon, see polarization of light for the classical point of view.
The polarization state and how it can be decomposed into different modes can be well visualized with the Poincaré sphere.
One key idea about photon polarization is that it carries angular momentum. Therefore, when an electron changes orbitals in the Schrödinger equation solution for the hydrogen atom, the angular momentum (as well as energy) change is carried out by the polarization of the photon!
Appears in the Schrödinger equation.
Equals the quantum of angular momentum in the Bohr model.
Is the only atom that has a closed form solution, which allows for very good predictions, and gives awesome intuition about the orbitals in general.
It is arguably the most important solution of the Schrodinger equation.
In particular, it predicts:
- the major spectral line of the hydrogen atom by taking the difference between energy levels
The explicit solution can be written in terms of spherical harmonics.
- 1859-1900: see Section "Black-body radiation experiment". Continuously improving culminating in Planck's law black-body radiation and Planck's law
- 1905 photoelectric effect and the photon
- TODO experiments
- 1905 Einstein's photoelectric effect paper. Planck was intially thinking that light was continuous, but the atoms vibrated in a discrete way. Einstein's explanation of the photoelectric effect throws that out of the window, and considers the photon discrete.
- 1913 atomic spectra and the Bohr model
- 1885 Balmer series, an empirical formula describes some of the lines of the hydrogen emission spectrum
- 1888 Rydberg formula generalizes the Balmer series
- 1896 Pickering series makes it look like a star has some new kind of hydrogen that produces half-integer entries in the Pickering series
- 1911 Bohr visits J. J. Thomson in the University of Cambridge for his postdoc, but they don't get along well
- Bohr visits Rutherford at the University of Manchester and decides to transfer there. During this stay he becomes interested in problems of the electronic structure of the atom.Bohr was forced into a quantization postulate because spinning electrons must radiate energy and collapse, so he postulated that electrons must somehow magically stay in orbits without classically spinning.
- 1913 february: young physics professor Hans Hansen tells Bohr about the Balmer series. This is one of the final elements Bohr needed.
- 1913 Bohr model published predicts atomic spectral lines in terms of the Planck constant and other physical constant.
- explains the Pickering series as belonging to inoized helium that has a single electron. The half term in the spectral lines of this species come from the nucleus having twice the charge of hydrogen.
- 1913 March: during review before publication, Rutherford points out that instantaneous quantum jumps don't seem to play well with causality.
- 1916 Bohr-Sommerfeld model introduces angular momentum to explain why some lines are not observed, as they would violate the conservation of angular momentum.