In mathematics, a "classification" means making a list of all possible objects of a given type.
Classification results are some of Ciro Santilli's favorite: Section "The beauty of mathematics".
Examples:
- classification of finite simple groups
- classification of regular polytopes
- classification of closed surfaces, and more generalized generalized Poincaré conjectures
- classification of associative real division algebras
- classification of finite fields
- classification of simple Lie groups
- classification of the wallpaper groups and the space groups
accounts for them all, which we know how to do due to the classification of finite fields.
So we see that the classification is quite simple, much like the classification of finite fields, and in strict opposition to the classification of finite simple groups (not to mention the 2023 lack of classification for non simple finite groups!)
As per classification of finite fields those must be of prime power order.
Video "Finite fields made easy by Randell Heyman (2015)" at youtu.be/z9bTzjy4SCg?t=159 shows how for order . Basically, for order , we take:For a worked out example, see: GF(4).
- each element is a polynomial in , , the polynomial ring over the finite field with degree smaller than . We've just seen how to construct for prime above, so we're good there.
- addition works element-wise modulo on
- multiplication is done modulo an irreducible polynomial of order
general linear group over a finite field of order . Remember that due to the classification of finite fields, there is one single field for each prime power .
Exactly as over the real numbers, you just put the finite field elements into a matrix, and then take the invertible ones.
Something analogous to a group isomorphism, but that preserves whatever properties the given algebraic object has. E.g. for a field, we also have to preserve multiplication in addition to addition.
Other common examples include isomorphisms of vector spaces and field. But since both of those two are much simpler than groups in classification, as they are both determined by number of elements/dimension alone, see:we tend to not talk about isomorphisms so much in those contexts.
They come up a lot in many contexts, e.g.: