Classification of finite rings Updated +Created
accounts for them all, which we know how to do due to the classification of finite fields.
So we see that the classification is quite simple, much like the classification of finite fields, and in strict opposition to the classification of finite simple groups (not to mention the 2023 lack of classification for non simple finite groups!)
Finite field of non-prime order Updated +Created
As per classification of finite fields those must be of prime power order.
Video "Finite fields made easy by Randell Heyman (2015)" at youtu.be/z9bTzjy4SCg?t=159 shows how for order . Basically, for order , we take:
For a worked out example, see: GF(4).
Finite general linear group Updated +Created
general linear group over a finite field of order . Remember that due to the classification of finite fields, there is one single field for each prime power .
Exactly as over the real numbers, you just put the finite field elements into a matrix, and then take the invertible ones.
Isomorphism Updated +Created
Something analogous to a group isomorphism, but that preserves whatever properties the given algebraic object has. E.g. for a field, we also have to preserve multiplication in addition to addition.
Other common examples include isomorphisms of vector spaces and field. But since both of those two are much simpler than groups in classification, as they are both determined by number of elements/dimension alone, see:we tend to not talk about isomorphisms so much in those contexts.
Prime power Updated +Created
They come up a lot in many contexts, e.g.: