John von Neumann Updated +Created
This is the one Ciro Santilli envies the most, because he has such a great overlap with Ciro's interests, e.g.:
Video 1.
John von Neuman - a documentary by the Mathematical Association of America (1966)
Source. Some good testimonies. Some boring.
Schrödinger picture Updated +Created
To better understand the discussion below, the best thing to do is to read it in parallel with the simplest possible example: Schrödinger picture example: quantum harmonic oscillator.
The state of a quantum system is a unit vector in a Hilbert space.
"Making a measurement" for an observable means applying a self-adjoint operator to the state, and after a measurement is done:
Those last two rules are also known as the Born rule.
Self adjoint operators are chosen because they have the following key properties:
Perhaps the easiest case to understand this for is that of spin, which has only a finite number of eigenvalues. Although it is a shame that fully understanding that requires a relativistic quantum theory such as the Dirac equation.
The next steps are to look at simple 1D bound states such as particle in a box and quantum harmonic oscillator.
The solution to the Schrödinger equation for a free one dimensional particle is a bit harder since the possible energies do not make up a countable set.
This formulation was apparently called more precisely Dirac-von Neumann axioms, but it because so dominant we just call it "the" formulation.
Quantum Field Theory lecture notes by David Tong (2007) mentions that:
if you were to write the wavefunction in quantum field theory, it would be a functional, that is a function of every possible configuration of the field .