To better understand the discussion below, the best thing to do is to read it in parallel with the simplest possible example: Schrödinger picture example: quantum harmonic oscillator.
The state of a quantum system is a unit vector in a Hilbert space.
"Making a measurement" for an observable means applying a self-adjoint operator to the state, and after a measurement is done:
Those last two rules are also known as the Born rule.
Self adjoint operators are chosen because they have the following key properties:
Perhaps the easiest case to understand this for is that of spin, which has only a finite number of eigenvalues. Although it is a shame that fully understanding that requires a relativistic quantum theory such as the Dirac equation.
The next steps are to look at simple 1D bound states such as particle in a box and quantum harmonic oscillator.
The solution to the Schrödinger equation for a free one dimensional particle is a bit harder since the possible energies do not make up a countable set.
This formulation was apparently called more precisely Dirac-von Neumann axioms, but it because so dominant we just call it "the" formulation.
Quantum Field Theory lecture notes by David Tong (2007) mentions that:
if you were to write the wavefunction in quantum field theory, it would be a functional, that is a function of every possible configuration of the field .
TODO: use the results from the quantum harmonic oscillator solution to precisely illustrate the discussion at Schrödinger picture with a concrete example.
Similar to quantum jump in the Bohr model, but for the Schrödinger equation.
The idea the the wave function of a small observed system collapses "obviously" cannot be the full physical truth, only a very useful approximation of reality.
Because then are are hard pressed to determine the boundary between what collapses and what doesn't, and there isn't such a boundary, as everything is interacting, including the observer.
The many-worlds interpretation is an elegant explanation for this. Though it does feel a bit sad and superfluous.
One single universal wavefunction, and every possible outcomes happens in some alternate universe. Does feel a bit sad and superfluous, but also does give some sense to perceived "wave function collapse".

Articles by others on the same topic (1)