Baker-Campbell-Hausdorff formula Updated +Created
Solution for given and of:
where is the exponential map.
If we consider just real number, , but when X and Y are non-commutative, things are not so simple.
Furthermore, TODO confirm it is possible that a solution does not exist at all if and aren't sufficiently small.
This formula is likely the basis for the Lie group-Lie algebra correspondence. With it, we express the actual group operation in terms of the Lie algebra operations.
Notably, remember that a algebra over a field is just a vector space with one extra product operation defined.
Vector spaces are simple because all vector spaces of the same dimension on a given field are isomorphic, so besides the dimension, once we define a Lie bracket, we also define the corresponding Lie group.
Since a group is basically defined by what the group operation does to two arbitrary elements, once we have that defined via the Baker-Campbell-Hausdorff formula, we are basically done defining the group in terms of the algebra.
Exponential map (Lie theory) Updated +Created
Like everything else in Lie group theory, you should first look at the matrix version of this operation: the matrix exponential.
The exponential map links small transformations around the origin (infinitely small) back to larger finite transformations, and small transformations around the origin are something we can deal with a Lie algebra, so this map links the two worlds.
The idea is that we can decompose a finite transformation into infinitely arbitrarily small around the origin, and proceed just like the product definition of the exponential function.
The definition of the exponential map is simply the same as that of the regular exponential function as given at Taylor expansion definition of the exponential function, except that the argument can now be an operator instead of just a number.
Lie algebra of Updated +Created
This is a good first concrete example of a Lie algebra. Shown at Lie Groups, Physics, and Geometry by Robert Gilmore (2008) Chapter 4.2 "How to linearize a Lie Group" has an example.
We can use use the following parametrization of the special linear group on variables , and :
Every element with this parametrization has determinant 1:
Furthermore, any element can be reached, because by independently settting , and , , and can have any value, and once those three are set, is fixed by the determinant.
To find the elements of the Lie algebra, we evaluate the derivative on each parameter at 0:
Remembering that the Lie bracket of a matrix Lie group is really simple, we can then observe the following Lie bracket relations between them:
One key thing to note is that the specific matrices , and are not really fundamental: we could easily have had different matrices if we had chosen any other parametrization of the group.
TODO confirm: however, no matter which parametrization we choose, the Lie bracket relations between the three elements would always be the same, since it is the number of elements, and the definition of the Lie bracket, that is truly fundamental.
Lie Groups, Physics, and Geometry by Robert Gilmore (2008) Chapter 4.2 "How to linearize a Lie Group" then calculates the exponential map of the vector as:
with:
TODO now the natural question is: can we cover the entire Lie group with this exponential? Lie Groups, Physics, and Geometry by Robert Gilmore (2008) Chapter 7 "EXPonentiation" explains why not.
Lie algebra of Updated +Created
We can reach it by taking the rotations in three directions, e.g. a rotation around the z axis:
then we derive and evaluate at 0:
therefore represents the infinitesimal rotation.
Note that the exponential map reverses this and gives a finite rotation around the Z axis back from the infinitesimal generator :
Repeating the same process for the other directions gives:
We have now found 3 linearly independent elements of the Lie algebra, and since has dimension 3, we are done.
Lie Groups, Physics, and Geometry by Robert Gilmore (2008) Updated +Created
The author seems to have uploaded the entire book by chapters at: www.physics.drexel.edu/~bob/LieGroups.html
And the author is the cutest: www.physics.drexel.edu/~bob/Personal.html.
Overview:
Matrix exponential Updated +Created
Is the solution to a system of linear ordinary differential equations, the exponential function is just a 1-dimensional subcase.
Note that more generally, the matrix exponential can be defined on any ring.
The matrix exponential is of particular interest in the study of Lie groups, because in the case of the Lie algebra of a matrix Lie group, it provides the correct exponential map.
Video 1.
How (and why) to raise e to the power of a matrix by 3Blue1Brown (2021)
Source.
Product definition of the exponential function Updated +Created
The basic intuition for this is to start from the origin and make small changes to the function based on its known derivative at the origin.
More precisely, we know that for any base b, exponentiation satisfies:
  • .
  • .
And we also know that for in particular that we satisfy the exponential function differential equation and so:
One interesting fact is that the only thing we use from the exponential function differential equation is the value around , which is quite little information! This idea is basically what is behind the importance of the ralationship between Lie group-Lie algebra correspondence via the exponential map. In the more general settings of groups and manifolds, restricting ourselves to be near the origin is a huge advantage.
Now suppose that we want to calculate . The idea is to start from and then then to use the first order of the Taylor series to extend the known value of to .
E.g., if we split into 2 parts, we know that:
or in three parts:
so we can just use arbitrarily many parts that are arbitrarily close to :
and more generally for any we have:
Let's see what happens with the Taylor series. We have near in little-o notation:
Therefore, for , which is near for any fixed :
and therefore:
which is basically the formula tha we wanted. We just have to convince ourselves that at , the disappears, i.e.:
To do that, let's multiply by itself once:
and multiplying a third time:
TODO conclude.
Representation theory of the Lorentz group Updated +Created
Physics from Symmetry by Jakob Schwichtenberg (2015) page 66 shows one in terms of 4x4 complex matrices.
More importantly though, are the representations of the Lie algebra of the Lorentz group, which are generally also just also called "Representation of the Lorentz group" since you can reach the representation from the algebra via the exponential map.
Bibliography: