Both are harmonic oscillators.
In the LC circuit:
- the current current may be seen as the velocity and containing the kinetic energy
- the charge stored in the capacitor as the potential energy
You can kickstart motion in either of those systems in two ways:
- charge the capacitor, i.e. pull the string, and then let it go, i.e. close the circuit. This is the simpler one to realise. Shown concretely at: Video "LC circuit dampened oscillations on an oscilloscope by Queuerious Guy (2014)"
- give speed to the mass, i.e. make a current pass through the inductor
When Ciro Santilli was studying electronics at the University of São Paulo, the courses, which were heavily inspired from the USA 50's were obsessed by this one! Thinking about it, it is kind of a cool thing though.
That Wikipedia page is the epitome of Wikipedia failure to explain things in a way that is of any interest to any learner. Video 1. "Tutorial on LC resonant circuits by w2aew (2012)" is the opposite.
Oscillator made of an LC circuit.
A quantum version of the LC circuit!
TODO are there experiments, or just theoretical?
Superconducting quantum computer need non-linear components Updated 2024-12-15 +Created 1970-01-01
Non-linearity is needed otherwise the input energy would just make the state go to higher and higher energy levels, e.g. from 1 to 2. But we only want to use levels 0 and 1.
The way this is modelled in by starting from a pure LC circuit, which is an harmonic oscillator, see also quantum LC circuit, and then replacing the linear inductor with a SQUID device, e.g. mentioned at: youtu.be/eZJjQGu85Ps?t=1655 Video "Superconducting Qubits I Part 1 by Zlatko Minev (2020)".
Based on the Josephson effect. Yet another application of that phenomenal phenomena!
Philosophically, superconducting qubits are good because superconductivity is macroscopic.
It is fun to see that the representation of information in the QC basically uses an LC circuit, which is a very classical resonator circuit.
As mentioned at en.wikipedia.org/wiki/Superconducting_quantum_computing#Qubit_archetypes there are actually a few different types of superconducting qubits:
- flux
- charge
- phase
and hybridizations of those such as:
Input:
- microwave radiation to excite circuit, or do nothing and wait for it to fall to 0 spontaneously
- interaction: TODO
- readout: TODO
Used e.g. in the Sycamore processor.
The most basic type of transmon is in Ciro's ASCII art circuit diagram notation, an LC circuit e.g. as mentioned at youtu.be/cb_f9KpYipk?t=180 from Video "The transmon qubit by Leo Di Carlo (2018)":
+----------+
| Island 1 |
+----------+
| |
X C
| |
+----------+
| Island 2 |
+----------+
youtu.be/eZJjQGu85Ps?t=2443 from Video "Superconducting Qubits I Part 1 by Zlatko Minev (2020)" describes a (possibly simplified) physical model of it, as two superconducting metal islands linked up by a Josephson junction marked as The circuit is then analogous to a LC circuit, with the islands being the capacitor. The Josephson junction functions as a non-linear inductor.
X
in the diagram as per-Ciro's ASCII art circuit diagram notation:+-------+ +-------+
| | | |
| Q_1() |---X---| Q_2() |
| | | |
+-------+ +-------+
Others define it with a SQUID device instead: youtu.be/cb_f9KpYipk?t=328 from Video "The transmon qubit by Leo Di Carlo (2018)". He mentions that this allows tuning the inductive element without creating a new device.