Lie Groups, Physics, and Geometry by Robert Gilmore (2008) Updated 2024-12-15 +Created 1970-01-01
The author seems to have uploaded the entire book by chapters at: www.physics.drexel.edu/~bob/LieGroups.html
And the author is the cutest: www.physics.drexel.edu/~bob/Personal.html.
Overview:
- Chapter 3: gives a bunch of examples of important matrix Lie groups. These are done by imposing certain types of constraints on the general linear group, to obtain subgroups of the general linear group. Feels like the start of a classification
- Chapter 4: defines Lie algebra. Does some basic examples with them, but not much of deep interest, that is mostl left for Chapter 7
- Chapter 5: calculates the Lie algebra for all examples from chapter 3
- Chapter 6: don't know
- Chapter 7: describes how the exponential map links Lie algebras to Lie groups
The one parameter subgroup of a Lie group for a given element of its Lie algebra is a subgroup of given by:
Intuitively, is a direction, and is how far we move along a given direction. This intuition is especially vivid in for example in the case of the Lie algebra of , the rotation group.
One parameter subgroups can be seen as the continuous analogue to the cycle of an element of a group.
This is a good and simple first example of Lie algebra to look into.
The most important example is perhaps and , both of which have the same Lie algebra, but are not isomorphic.