A single exponential map is not enough to recover a simple Lie group from its algebra Updated 2024-12-15 +Created 1970-01-01
Example at: Lie Groups, Physics, and Geometry by Robert Gilmore (2008) Chapter 7 "EXPonentiation".
Like everything else in Lie groups, first start with the matrix as discussed at Section "Lie algebra of a matrix Lie group".
Intuitively, a Lie algebra is a simpler object than a Lie group. Without any extra structure, groups can be very complicated non-linear objects. But a Lie algebra is just an algebra over a field, and one with a restricted bilinear map called the Lie bracket, that has to also be alternating and satisfy the Jacobi identity.
Another important way to think about Lie algebras, is as infinitesimal generators.
Because of the Lie group-Lie algebra correspondence, we know that there is almost a bijection between each Lie group and the corresponding Lie algebra. So it makes sense to try and study the algebra instead of the group itself whenever possible, to try and get insight and proofs in that simpler framework. This is the key reason why people study Lie algebras. One is philosophically reminded of how normal subgroups are a simpler representation of group homomorphisms.
To make things even simpler, because all vector spaces of the same dimension on a given field are isomorphic, the only things we need to specify a Lie group through a Lie algebra are:Note that the Lie bracket can look different under different basis of the Lie algebra however. This is shown for example at Physics from Symmetry by Jakob Schwichtenberg (2015) page 71 for the Lorentz group.
- the dimension
- the Lie bracket
As mentioned at Lie Groups, Physics, and Geometry by Robert Gilmore (2008) Chapter 4 "Lie Algebras", taking the Lie algebra around the identity is mostly a convention, we could treat any other point, and things are more or less equivalent.
Lie Groups, Physics, and Geometry by Robert Gilmore (2008) 7.2 "The covering problem" gives some amazing intuition on the subject as usual.
This is a good first concrete example of a Lie algebra. Shown at Lie Groups, Physics, and Geometry by Robert Gilmore (2008) Chapter 4.2 "How to linearize a Lie Group" has an example.
Every element with this parametrization has determinant 1:Furthermore, any element can be reached, because by independently settting , and , , and can have any value, and once those three are set, is fixed by the determinant.
To find the elements of the Lie algebra, we evaluate the derivative on each parameter at 0:
Remembering that the Lie bracket of a matrix Lie group is really simple, we can then observe the following Lie bracket relations between them:
One key thing to note is that the specific matrices , and are not really fundamental: we could easily have had different matrices if we had chosen any other parametrization of the group.
TODO confirm: however, no matter which parametrization we choose, the Lie bracket relations between the three elements would always be the same, since it is the number of elements, and the definition of the Lie bracket, that is truly fundamental.
Lie Groups, Physics, and Geometry by Robert Gilmore (2008) Chapter 4.2 "How to linearize a Lie Group" then calculates the exponential map of the vector as:with:
TODO now the natural question is: can we cover the entire Lie group with this exponential? Lie Groups, Physics, and Geometry by Robert Gilmore (2008) Chapter 7 "EXPonentiation" explains why not.
The Baker-Campbell-Hausdorff formula basically defines how to map an algebra to the group.
Bibliography:
- Lie Groups, Physics, and Geometry by Robert Gilmore (2008) Chapter 7 "EXPonentiation"
The product of a exponential of the compact algebra with that of the non-compact algebra recovers a simple Lie from its algebra Updated 2024-12-15 +Created 1970-01-01
Example at: Lie Groups, Physics, and Geometry by Robert Gilmore (2008) Chapter 7 "EXPonentiation".
Furthermore, the non-compact part is always isomorphic to , only the non-compact part can have more interesting structure.