Dot product Updated +Created
The definition of the "dot product" of a general space varies quite a lot with different contexts.
Most definitions tend to be bilinear forms.
We use the unqualified generally refers to the dot product of Real coordinate spaces, which is a positive definite symmetric bilinear form. Other important examples include:
The rest of this section is about the case.
The positive definite part of the definition likely comes in because we are so familiar with metric spaces, which requires a positive norm in the norm induced by an inner product.
The default Euclidean space definition, we use the matrix representation of a symmetric bilinear form as the identity matrix, e.g. in :
so that:
Isometry group Updated +Created
The group of all transformations that preserve some bilinear form, notable examples:
Lorentz group Updated +Created
Subgroup of the Poincaré group without translations. Therefore, in those, the spacetime origin is always fixed.
Or in other words, it is as if two observers had their space and time origins at the exact same place. However, their space axes may be rotated, and one may be at a relative speed to the other to create a Lorentz boost. Note however that if they are at relative speeds to one another, then their axes will immediately stop being at the same location in the next moment of time, so things are only valid infinitesimally in that case.
This group is made up of matrix multiplication alone, no need to add the offset vector: space rotations and Lorentz boost only spin around and bend things around the origin.
One definition: set of all 4x4 matrices that keep the Minkowski inner product, mentioned at Physics from Symmetry by Jakob Schwichtenberg (2015) page 63. This then implies:
Minkowski inner product matrix Updated +Created
Since that is a symmetric bilinear form, the associated matrix is a symmetric matrix.
By default, we will use the time negative representation unless stated otherwise:
but another equivalent one is to use a time positive representation:
The matrix is typically denoted by the Greek letter eta.
Minkowski space Updated +Created
with a weird dot product-like operation called the Minkowski inner product.
Because the Minkowski inner product product is not positive definite, the norm induced by an inner product is a norm, and the space is not a metric space strictly speaking.
The name given to this type of space is a pseudometric space.