Used to explain the black-body radiation experiment.
Published as: On the Theory of the Energy Distribution Law of the Normal Spectrum by Max Planck (1900).
The Quantum Story by Jim Baggott (2011) page 9 mentions that Planck apparently immediately recognized that Planck constant was a new fundamental physical constant, and could have potential applications in the definition of the system of units (TODO where was that published):This was a visionary insight, and was finally realized in the 2019 redefinition of the SI base units.
Planck wrote that the constants offered: 'the possibility of establishing units of length, mass, time and temperature which are independent of specific bodies or materials and which necessarily maintain their meaning for all time and for all civilizations, even those which are extraterrestrial and nonhuman, constants which therefore can be called "fundamental physical units of measurement".'
TODO how can it be derived from theoretical principles alone? There is one derivation at; en.wikipedia.org/wiki/Planck%27s_law#Derivation but it does not seem to mention the Schrödinger equation at all.
- 1859-1900: see Section "Black-body radiation experiment". Continuously improving culminating in Planck's law black-body radiation and Planck's law
- 1905 photoelectric effect and the photon
- TODO experiments
- 1905 Einstein's photoelectric effect paper. Planck was intially thinking that light was continuous, but the atoms vibrated in a discrete way. Einstein's explanation of the photoelectric effect throws that out of the window, and considers the photon discrete.
- 1913 atomic spectra and the Bohr model
- 1885 Balmer series, an empirical formula describes some of the lines of the hydrogen emission spectrum
- 1888 Rydberg formula generalizes the Balmer series
- 1896 Pickering series makes it look like a star has some new kind of hydrogen that produces half-integer entries in the Pickering series
- 1911 Bohr visits J. J. Thomson in the University of Cambridge for his postdoc, but they don't get along well
- Bohr visits Rutherford at the University of Manchester and decides to transfer there. During this stay he becomes interested in problems of the electronic structure of the atom.Bohr was forced into a quantization postulate because spinning electrons must radiate energy and collapse, so he postulated that electrons must somehow magically stay in orbits without classically spinning.
- 1913 february: young physics professor Hans Hansen tells Bohr about the Balmer series. This is one of the final elements Bohr needed.
- 1913 Bohr model published predicts atomic spectral lines in terms of the Planck constant and other physical constant.
- explains the Pickering series as belonging to inoized helium that has a single electron. The half term in the spectral lines of this species come from the nucleus having twice the charge of hydrogen.
- 1913 March: during review before publication, Rutherford points out that instantaneous quantum jumps don't seem to play well with causality.
- 1916 Bohr-Sommerfeld model introduces angular momentum to explain why some lines are not observed, as they would violate the conservation of angular momentum.