Extremely precocious, borderline child prodigy, he was reading Dirac at 13-14 from the library.
He started working at night and sleeping during the moring/early afternoon while he was at university.
He was the type of guy that was so good that he didn't really have to follow the university rules very much. He would get into trouble for not following some stupid requirement, but he was so good that they would just let him get away with it.
Besides quantum electrodynamics, Julian worked on radar at the Rad Lab during World War II, unlike most other top physicists who went to Los Alamos Laboratory to work on the atomic bomb, and he made important contributions there on calculating the best shape of the parts and so on.
He was known for being very formal mathematically and sometimes hard to understand, in stark contrast to Feynman which was much more lose and understandable, especially after Freeman Dyson translated him to the masses.
However, QED and the men who made it: Dyson, Feynman, Schwinger, and Tomonaga by Silvan Schweber (1994) does emphacise that he was actually also very practical in the sense that he always aimed to obtain definite numbers out of his calculations, and that was not only the case for the Lamb shift.
Published as "Fine Structure of the Hydrogen Atom by a Microwave Method" by Willis Lamb and Robert Retherford (1947) on Physical Review. This one actually has open accesses as of 2021, miracle! journals.aps.org/pr/pdf/10.1103/PhysRev.72.241
Microwave technology was developed in World War II for radar, notably at the MIT Radiation Laboratory. Before that, people were using much higher frequencies such as the visible spectrum. But to detect small energy differences, you need to look into longer wavelengths.
This experiment was fundamental to the development of quantum electrodynamics. As mentioned at Genius: Richard Feynman and Modern Physics by James Gleick (1994) chapter "Shrinking the infinities", before the experiment, people already knew that trying to add electromagnetism to the Dirac equation led to infinities using previous methods, and something needed to change urgently. However for the first time now the theorists had one precise number to try and hack their formulas to reach, not just a philosophical debate about infinities, and this led to major breakthroughs. The same book also describes the experiment briefly as:
Willis Lamb had just shined a beam of microwaves onto a hot wisp of hydrogen blowing from an oven.
It is two pages and a half long.
They were at Columbia University in the Columbia Radiation Laboratory. Robert was Willis' graduate student.
Previous less experiments had already hinted at this effect, but they were too imprecise to be sure.
Micro means "small wavelength compared to radio waves", not micron-sized.
Microwave production and detection is incredibly important in many modern applications:
- telecommunications, e.g. being used in
- Wi-Fi
- satellite communicationsyoutu.be/EYovBJR6l5U?list=PL-_93BVApb58SXL-BCv4rVHL-8GuC2WGb&t=27 from CuriousMarc comments on some piece of Apollo equipment they were restoring/reversing:Ah, Ciro Santilli really wishes he knew what that meant more precisely. Sounds so cool!
These are the boxes that brought you voice, data and live TV from the moon, and should be early masterpieces of microwave electronics, the blackest of black arts in analog electronics.
- 4G and other cellular network standards
- radar. As an example, 1965 Nobel Prize in Physics laureate Julian Schwinger did some notable work in the area in World War II, while most other physicists went to the Manhattan Project instead.This is well highlighted in QED and the men who made itby Silvan Schweber (1994). Designing the cavity wasn't easy. One of the key initial experiments of quantum electrodynamics, the Lamb-Retherford experiment from 1947, fundamental for modern physics, was a direct consequence of post-radar research by physicists who started to apply wartime developments to their scientific search.Wikipedia also mentions en.wikipedia.org/w/index.php?title=Microwave&oldid=1093188913#Radar_2:
The first modern silicon and germanium diodes were developed as microwave detectors in the 1930s, and the principles of semiconductor physics learned during their development led to semiconductor electronics after the war.
- microwave is the natural frequency of several important Atomic, Molecular and Optical Physics phenomena, and has been used extensively in quantum computing applications, including completely different types of quantum computer type:Likely part of the appeal of microwaves is that they are non-ionizing, so you don't destroy stuff. But at the same time, they are much more compatible with atomic scale energies than radio waves, which have way way too little energy.
- trapped ion quantum computer; Video "Trapping Ions for Quantum Computing by Diana Craik (2019)"
- superconducting quantum computer; e.g. this Junior Microwave Design Engineer job accouncement from Alice&Bob: archive.ph/wip/4wGPJ
Made huge advances in radar.
Notably, Isidor Isaac Rabi was a leading figure there, and later he was head at the Columbia University laboratory that carried out the crucial Lamb-Retherford experiment and the anomalous magnetic dipole moment of the electron published at The Magnetic Moment of the Electron by Kusch and Foley (1948) using related techniques.