TODO understand.
Trapping Ions for Quantum Computing by Diana Craik (2019)
Source. A basic introduction, but very concrete, with only a bit of math it might be amazing:Sounds complicated, several technologies need to work together for that to work! Videos of ions moving are from www.physics.ox.ac.uk/research/group/ion-trap-quantum-computing.
- youtu.be/j1SKprQIkyE?t=217 you need ultra-high vacuum
- youtu.be/j1SKprQIkyE?t=257 you put the Calcium on a "calcium oven", heat it up, and make it evaporates a little bit
- youtu.be/j1SKprQIkyE?t=289 you need lasers. You shine the laser on the calcium atom to eject one of the two valence electrons from it. Though e.g. Universal Quantum is trying to do away with them, because alignment for thousands or millions of particles would be difficult.
- youtu.be/j1SKprQIkyE?t=518 keeping all surrounding electrodes positive would be unstable. So they instead alternate electrode quickly between plus and minus
- youtu.be/j1SKprQIkyE?t=643 talks about the alternative, of doing it just with electrodes on a chip, which is easier to manufacture. They fly at about 100 microns above the trap. And you can have multiple ions per chip.
- youtu.be/j1SKprQIkyE?t=1165 using microwaves you can flip the spin of the electron, or put it into a superposition. From more reading, we understand that she is talking about a hyperfine transition, which often happen in the microwave area.
- youtu.be/j1SKprQIkyE?t=1210 talks about making quantum gates. You have to put the ions into a magnetic field at one of the two resonance frequencies of the system. Presumably what is meant is an inhomogenous magnetic field as in the Stern-Gerlach experiment.This is the hard and interesting part. It is not clear why the atoms become coupled in any way. Is it due to electric repulsion?She is presumably describing the Cirac–Zoller CNOT gate.
A major flaw of this presentation is not explaining the readout process.
How To Trap Particles in a Particle Accelerator by the Royal Institution (2016)
Source. Demonstrates trapping pollen particles in an alternating field.Ion trapping and quantum gates by Wolfgang Ketterle (2013)
Source. - youtu.be/lJOuPmI--5c?t=1601 Cirac–Zoller CNOT gate was the first 2 qubit gate. Explains it more or less.
Introduction to quantum optics by Peter Zoller (2018)
Source. THE Zoller from Cirac–Zoller CNOT gate talks about his gate.- www.youtube.com/watch?v=W3l0QPEnaq0&t=427s shows that the state is split between two options: center of mass mode (ions move in same direction), and strechmode (atoms move in opposite directions)
- youtu.be/W3l0QPEnaq0?t=658 shows a schematic of the experiment
Trapped ion people acknowledge that they can't put a million qubits in on chip (TODO why) so they are already thinking of ways to entangle separate chips. Thinking is maybe the key word here. One of the propoesd approaches inolves optical links. Universal Quantum for example explicitly rejects that idea in favor of electric field link modularity.
Quantum Computing with Trapped Ions by Christopher Monroe (2018)
Source. Co-founder of IonQ. Cool dude. Starts with basic background we already know now. Mentions that there is some relationship between atomic clocks and trapped ion quantum computers, which is interesting. Then he goes into turbo mode, and you get lost unless you're an expert! Video 1. "Quantum Simulation and Computation with Trapped Ions by Christopher Monroe (2021)" is perhaps a better watch.- youtu.be/9aOLwjUZLm0?t=1216 superconducting qubits are bad because it is harder to ensure that they are all the same
- youtu.be/9aOLwjUZLm0?t=1270 our wires are provided by lasers. Gives example of ytterbium, which has nice frequencies for practical laser choice. Ytterbium ends in 6s2 5d1, so they must remove the 5d1 electron? But then you are left with 2 electrons in 6s2, can you just change their spins at will without problem?
- youtu.be/9aOLwjUZLm0?t=1391 a single atom actually reflects 1% of the input laser, not bad!
- youtu.be/9aOLwjUZLm0?t=1475 a transition that they want to drive in Ytterbium has 355 nm, which is easy to generate TODO why.
- youtu.be/9aOLwjUZLm0?t=1520 mentions that 351 would be much harder, e.g. as used in inertially confied fusion, takes up a room
- youtu.be/9aOLwjUZLm0?t=1539 what they use: a pulsed laser. It is made primarily for photolithography, Coherent, Inc. makes 200 of them a year, so it is reliable stuff and easy to operate. At www.coherent.com/lasers/nanosecond/avia-nx we can see some of their 355 offers. archive.ph/wip/JKuHI shows a used system going for 4500 USD.
- youtu.be/9aOLwjUZLm0?t=1584 Cirac and Zoller proposed the idea of using entangled ions soon after they heard about Shor's algorithm in 1995
- youtu.be/9aOLwjUZLm0?t=1641 you use optical tweezers to move the pairs of ions you want to entangle. This means shining a laser on two ions at the same time. Their movement depends on their spin, which is already in a superposition. If both move up, their distance stats the same, so the Coulomb interaction is unchanged. But if they are different, then one goes up and the other down, distance increases due to the diagonal, and energy is lower.
- youtu.be/9aOLwjUZLm0?t=1939 S. Debnah 2016 Nature experiment with a pentagon. Well, it is not a pentagon, they are just in a linear chain, the pentagon is just to convey the full connectivity. Maybe also Satanism. Anyways. This point also mentions usage of an acousto-optic modulator to select which atoms we want to act on. On the other side, a simpler wide laser is used that hits all atoms (optical tweezers are literally like tweezers in the sense that you use two lasers). Later on mentions that the modulator is from Harris, later merged with L3, so: www.l3harris.com/all-capabilities/acousto-optic-solutions
- youtu.be/9aOLwjUZLm0?t=2119 Bernstein-Vazirani algorithm. This to illustrate better connectivity of their ion approach compared to an IBM quantum computer, which is a superconducting quantum computer
- youtu.be/9aOLwjUZLm0?t=2354 hidden shift algorithm
- youtu.be/9aOLwjUZLm0?t=2740 Zhang et al. Nature 2017 paper about a 53 ion system that calculates something that cannot be classically calculated. Not fully controllable though, so more of a continuous-variable quantum information operation.
- youtu.be/9aOLwjUZLm0?t=2923 usage of cooling to 4 K to get lower pressures on top of vacuum. Before this point all experiments were room temperature. Shows image of refrigerator labelled Janis cooler, presumably something like: qd-uki.co.uk/cryogenics/janis-recirculating-gas-coolers/
- youtu.be/9aOLwjUZLm0?t=2962 qubit vs gates plot by H. Neven
- youtu.be/9aOLwjUZLm0?t=3108 modular trapped ion quantum computer ideas. Mentions experiment with 2 separate systems with optical link. Miniaturization and their black box. Mentions again that their chip is from Sandia. Amazing how you pronounce that.
This job announcement from 2022 gives a good idea about their tech stack: web.archive.org/web/20220920114810/https://oxfordionics.bamboohr.com/jobs/view.php?id=32&source=aWQ9MTA%3D. Notably, they use ARTIQ.
Funding:
Merger between Cambridge Quantum Computing, which does quantum software, and Honeywell Quantum Solutions, which does the hardware.
E.g.: www.quantinuum.com/pressrelease/demonstrating-benefits-of-quantum-upgradable-design-strategy-system-model-h1-2-first-to-prove-2-048-quantum-volume from 2021.
In 2015, they got a 50 million investment from Grupo Arcano, led by Alberto Chang-Rajii, who is a really shady character who fled from justice for 2 years:
Merged into Quantinuum later on in 2021.
TODO vs all the others?
As of 2021, their location is a small business park in Haywards Heath, about 15 minutes north of Brighton[ref]
Funding rounds:
- 2022:
- 67m euro contract with the German government: www.uktech.news/deep-tech/universal-quantum-german-contract-20221102 Both co-founders are German. They then immediatly announced several jobs in Hamburg: apply.workable.com/universalquantum/?lng=en#jobs so presumably linked to the Hamburg University of Technology campus of the German Aerospace Center.
- medium.com/@universalquantum/universal-quantum-wins-67m-contract-to-build-the-fully-scalable-trapped-ion-quantum-computer-16eba31b869e
- 2021: $10M (7.5M GBP) grant from the British Government: www.uktech.news/news/brighton-universal-quantum-wins-grant-20211105This grant is very secretive, very hard to find any other information about it! Most investment trackers are not listing it.The article reads:Interesting!
Universal Quantum will lead a consortium that includes Rolls-Royce, quantum developer Riverlane, and world-class researchers from Imperial College London and The University of Sussex, among others.
A but further down the article gives some more information of partners, from which some of the hardware vendors can be deduced:The consortium includes end-user Rolls-Royce supported by the Science and Technology Facilities Council (STFC) Hartree Centre, quantum software developer Riverlane, supply chain partners Edwards, TMD Technologies (now acquired by Communications & Power Industries (CPI)) and Diamond Microwave
- Edwards is presumably Edwards Vacuum, since we know that trapped ion quantum computers rely heavily on good vacuum systems. Edwards Vacuum is also located quite close to Universal Quantum as of 2022, a few minutes drive.
- TMD Technologies is a microwave technology vendor amongst other things, and we know that microwaves are used e.g. to initialize the spin states of the ions
- Diamond Microwave is another microwave stuff vendor
The money comes from UK's "Industrial Strategy Challenge Fund".www.riverlane.com/news/2021/12/riverlane-joins-7-5-million-consortium-to-build-error-corrected-quantum-processor/ gives some more details on the use case provided by Rolls Royce:The work with Rolls Royce will explore how quantum computers can develop practical applications toward the development of more sustainable and efficient jet engines.This starts by applying quantum algorithms to take steps to toward a greater understanding of how liquids and gases flow, a field known as 'fluid dynamics'. Simulating such flows accurately is beyond the computational capacity of even the most powerful classical computers today.This funding was part of a larger quantum push by the UKNQTP: www.ukri.org/news/50-million-in-funding-for-uk-quantum-industrial-projects/ - 2020: $4.5M (3.5M GBP) www.crunchbase.com/organization/universal-quantum. Just out of stealth.
Co-founders:
- Sebastian Weidt. He is German, right? Yes at youtu.be/SwHaJXVYIeI?t=1078 from Video 3. "Fireside Chat with with Sebastian Weidt by Startup Grind Brighton (2022)". The company was founded by two Germans from Essex!
- Winfried Hensinger: if you saw him on the street, you'd think he plays in a punk-rock band. That West Berlin feeling.
Homepage says only needs cooling to 70 K. So it doesn't work with liquid nitrogen which is 77 K?
Homepage points to foundational paper: www.science.org/doi/10.1126/sciadv.1601540
Universal Quantum emerges out of stealth by University of Sussex (2020)
Source. Explains that a more "traditional" trapped ion quantum computer would user "pairs of lasers", which would require a lot of lasers. Their approach is to try and do it by applying voltages to a microchip instead.- youtu.be/rYe9TXz35B8?t=127 shows some 3D models. It shows how piezoelectric actuators are used to align or misalign some plates, which presumably then determine conductivity
Quantum Computing webinar with Sebastian Weidt by Green Lemon Company (2020)
Source. The sound quality is to bad to stop and listen to, but it presumaby shows the coding office in the background.Fireside Chat with with Sebastian Weidt by Startup Grind Brighton (2022)
Source. Very basic target audience:- youtu.be/SwHaJXVYIeI?t=680 we are not at a point where you can buy victory. There is too much uncertainty involved across different approaches.
- youtu.be/SwHaJXVYIeI?t=949 his background
- youtu.be/SwHaJXVYIeI?t=1277 difference between venture capitalists in different countries
- youtu.be/SwHaJXVYIeI?t=1535 they are 33 people now. They've just setup their office in Haywards Heath, north of Bristol.