The "AI" part is just prerequisite buzzword of the AI boom era for any project and completely bullshit.
According to job postings such as: archive.ph/wip/Fdgsv their center is in Goleta, California, near Santa Barbara. Though Google tends to promote it more as Santa Barbara, see e.g. Daniel's t-shirt at Video "Building a quantum computer with superconducting qubits by Daniel Sank (2019)".
Philosophically, superconducting qubits are good because superconductivity is macroscopic.
It is fun to see that the representation of information in the QC basically uses an LC circuit, which is a very classical resonator circuit.
As mentioned at en.wikipedia.org/wiki/Superconducting_quantum_computing#Qubit_archetypes there are actually a few different types of superconducting qubits:
- flux
- charge
- phase
Input:
Quantum Computing with Superconducting Qubits by Alexandre Blais (2012)
Source. - youtu.be/uPw9nkJAwDY?t=293 superconducting qubits are good because superconductivity is macroscopic. Explains how in non superconducting metal, each electron moves separatelly, and can hit atoms and leak vibration/photos, which lead to observation and quantum error
- youtu.be/uPw9nkJAwDY?t=429 made of aluminium
- youtu.be/uPw9nkJAwDY?t=432 shows the circuit diagram, and notes that the thing is basically a LC circuitusing the newly created just now Ciro's ASCII art circuit diagram notation. Note that the block on the right is a SQUID device.
+-----+ | | | +-+-+ | | | C X X | | | | +-+-+ | | +-----+
- youtu.be/uPw9nkJAwDY?t=471 mentions that the frequency between states 0 and 1 is chosen to be 6 GHz:This explains why we need to go to much lower temperatures than simply the superconducting temperature of aluminum!
- higher frequencies would be harder/more expensive to generate
- lower frequencies would mean less energy according to the Planck relation. And less energy means that thermal energy would matter more, and introduce more noise.6 GHz is aboutFrom the definition of the Boltzmann constant, the temperature which has that average energe of particles is of the order of:
- youtu.be/xjlGL4Mvq7A?t=138 superconducting quantum computer need non-linear components (too brief if you don't know what he means in advance)
- youtu.be/xjlGL4Mvq7A?t=169 quantum computing is hard because we want long coherence but fast control
But seriously, this is a valuable little list.
The course is basically exclusively about transmons.
Circuit QED by Leo Di Carlo (2018)
Source. Via QuTech Academy.Single-qubit gate by Brian Taraskinki (2018)
Source. Good video! Basically you make a phase rotation by controlling the envelope of a pulse.Two qubit gates by Adriaan Rol (2018)
Source. Used e.g. in the Sycamore processor.
The most basic type of transmon is in Ciro's ASCII art circuit diagram notation, an LC circuit e.g. as mentioned at youtu.be/cb_f9KpYipk?t=180 from Video "The transmon qubit by Leo Di Carlo (2018)":
+----------+
| Island 1 |
+----------+
| |
X C
| |
+----------+
| Island 2 |
+----------+
youtu.be/eZJjQGu85Ps?t=2443 from Video "Superconducting Qubits I Part 1 by Zlatko Minev (2020)" describes a (possibly simplified) physical model of it, as two superconducting metal islands linked up by a Josephson junction marked as The circuit is then analogous to a LC circuit, with the islands being the capacitor. The Josephson junction functions as a non-linear inductor.
X
in the diagram as per-Ciro's ASCII art circuit diagram notation:+-------+ +-------+
| | | |
| Q_1() |---X---| Q_2() |
| | | |
+-------+ +-------+
Others define it with a SQUID device instead: youtu.be/cb_f9KpYipk?t=328 from Video "The transmon qubit by Leo Di Carlo (2018)". He mentions that this allows tuning the inductive element without creating a new device.
Calibration of Transmon Superconducting Qubits by Stefan Titus (2021)
Source. Possibly this Keysight which would make sense.