As of my last knowledge update in October 2023, there is no widely recognized person or entity named Rebecca Waldecker. It is possible that she could be a private individual or a public figure who may have gained prominence after that date or is not widely known.
14 Ceti is a star located in the constellation Cetus, which is often referred to as the Whale. It is a G-type giant star, which means it has exited the main sequence phase of its life and has expanded and cooled after exhausting the hydrogen fuel in its core. The star is approximately 200 light-years away from Earth and has a brightness that is roughly 100 times that of our Sun.
Richard Borcherds is a South African mathematician known for his work in theoretical mathematics, particularly in the fields of algebra and mathematical physics. He is best known for his contributions to the theory of vertex algebras and for his role in the development of the theory of the monster simple group, where he defined what is now known as Borcherds algebras.
"Saban's Gulliver's Travels" is a referred work that adapts Jonathan Swift's classic satirical novel "Gulliver's Travels." The original novel, published in 1726, follows Lemuel Gulliver, a ship's surgeon who embarks on several fantastical voyages to strange lands, encountering various societies and cultures that serve as a critique of contemporary politics, human nature, and societal norms.
In Jonathan Swift's satirical novel "Gulliver's Travels," the Struldbrugs are a fictional group of people in the land of Luggnagg who are born with a unique condition: they are immortal. However, this immortality comes with significant drawbacks. Although Struldbrugs do not age or die, they suffer from the effects of aging, both physically and mentally. As they grow older, they become increasingly frail and often experience a decline in their faculties.
Robert Steinberg can refer to a few notable figures, but one of the most prominent is Robert Steinberg, the American psychologist and creator of the Triarchic Theory of Intelligence, which suggests that intelligence can be understood through three components: analytical, creative, and practical intelligence. Additionally, there is Robert Steinberg, the co-founder of the popular chocolate company Scharffen Berger Chocolate Maker, which is known for its artisan chocolate products.
Ronald Solomon may refer to several individuals across different fields, but without specific context, it's difficult to determine which one you mean. One notable Ronald Solomon is a mathematician known for his work in algebra and combinatorics.
Sandy Green is a mathematician known for his work in the field of algebraic geometry. He is particularly recognized for his contributions to the study of syzygies and the theory of algebraic curves. Green has also been involved in research related to invariant theory and computational algebra. His work has had a significant impact on both theoretical aspects and practical applications within mathematics.
A **composite fermion** is a concept used in condensed matter physics, particularly in the study of the quantum Hall effect and two-dimensional electron systems. The idea is that under certain conditions, such as in a high magnetic field and low temperature, the behavior of electrons can be effectively described as being made up of composite particles rather than individual electrons.
The terms Lagrange top, Euler top, and Kovalevskaya top refer to specific types of rigid body dynamics problems in classical mechanics, particularly in the study of the motion of spinning tops. Each of these tops represents different cases of motion, characterized by their initial conditions, constraints, and governing equations. ### 1. Lagrange Top: The Lagrange top is a system characterized by a symmetric top that can move freely about a fixed point (like an axis).
The Lagrange bracket, more commonly known as the Poisson bracket in the context of classical mechanics, is a mathematical construct used to describe the behavior and evolution of dynamical systems in Hamiltonian mechanics. It provides a way to express the relationship between different physical quantities and their time evolution.
Ted Hurley is a fictional character from the television series "Better Off Ted," which aired from 2009 to 2010. The show is a satirical workplace comedy that focuses on the employees of a soulless corporation called Veridian Dynamics. Ted Hurley, played by Jay Harrington, is the protagonist and a sympathetic character who often finds himself caught in the absurdities of corporate life and ethical dilemmas posed by the company's practices.
Urs Stammbach is a Swiss biochemist known for his work in the fields of molecular biology and biochemistry, particularly in areas related to genetic research and chromatin biology.
Wanda Szmielew is a notable Polish mathematician known for her contributions to various areas of mathematics, particularly in the fields of mathematical logic and set theory. She is recognized for her work on the foundations of mathematics and has made significant contributions to the understanding of mathematical structures and their properties.
William Burnside (1852–1927) was a prominent British mathematician known for his contributions to group theory, particularly in the field of finite groups. He is well-known for Burnside's lemma, which provides a method to count the number of distinct objects under group actions, and for Burnside's theorem, which gives criteria for a group to be solvable. Burnside's work laid foundational principles that are still widely used in modern algebra and combinatorial species.
Zvonimir Janko is a Croatian mathematician known for his contributions to various fields within mathematics, particularly in the areas of topology and functional analysis. He has authored numerous papers and is recognized for his work in mathematics education as well.
Évariste Galois (1811–1832) was a French mathematician who made significant contributions to the field of abstract algebra. He is best known for developing what is now called Galois theory, which connects field theory and group theory in a profound way, providing a systematic way to study polynomial equations and their solutions. Galois's work primarily focused on understanding the solvability of polynomial equations in terms of group theory.
Fernando Quevedo is a renowned Spanish writer and poet known for his contributions to literature, particularly during the Spanish Golden Age in the 16th and 17th centuries. He was born in 1580 in Madrid and is recognized for his intricate style and rich use of language. In addition to his literary achievements, Fernando Quevedo is known for his philosophical writings and his involvement in the political and intellectual debates of his time.
Pinned article: Introduction to the OurBigBook Project
Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
Intro to OurBigBook
. Source. We have two killer features:
- topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculusArticles of different users are sorted by upvote within each article page. This feature is a bit like:
- a Wikipedia where each user can have their own version of each article
- a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.Figure 1. Screenshot of the "Derivative" topic page. View it live at: ourbigbook.com/go/topic/derivativeVideo 2. OurBigBook Web topics demo. Source. - local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
- to OurBigBook.com to get awesome multi-user features like topics and likes
- as HTML files to a static website, which you can host yourself for free on many external providers like GitHub Pages, and remain in full control
Figure 2. You can publish local OurBigBook lightweight markup files to either OurBigBook.com or as a static website.Figure 3. Visual Studio Code extension installation.Figure 5. . You can also edit articles on the Web editor without installing anything locally. Video 3. Edit locally and publish demo. Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension. - Infinitely deep tables of contents:
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact