These appear to be benchmarks that don't involve running anything concretely, just compiling and likely then counting gates:
This experiment seems to be really hard to do, and so there aren't many super clear demonstration videos with full experimental setup description out there unfortunately.
For single-photon non-double-slit experiments see: single photon production and detection experiments. Those are basically a pre-requisite to this.
photon experiments:
Non-elementary particle:
Video 1.
Single Photon Interference by Veritasium (2013)
Source. Claims to do exactly what we want, but does not describe the setup precisely well enough. Notably, does not justify how he knows that single photons are being produced.
ColdQuanta by Ciro Santilli 37 Updated 2025-07-16
Not a quantum computing pure-play, they also do sensing.
Just like as for classic gates, we would like to be able to select quantum computer physical implementations that can represent one or a few gates that can be used to create any quantum circuit.
Unfortunately, in the case of quantum circuits this is obviously impossible, since the space of N x N unitary matrices is infinite and continuous.
Therefore, when we say that certain gates form a "set of universal quantum gates", we actually mean that "any unitary matrix can be approximated to arbitrary precision with enough of these gates".
Or if you like fancy Mathy words, you can say that the subgroup of the unitary group generated by our basic gate set is a dense subset of the unitary group.
Video 1.
How To Build A Quantum Computer by Lukas's Lab (2023)
Source.
Super quick overview of the main types of quantum computer physical implementations, so doesn't any much to a quick Google.
He says he's going to make a series about it, so then something useful might actually come out. The first one was: Video "How to Turn Superconductors Into A Quantum Computer by Lukas's Lab (2023)", but it is still too basic.
The author's full name is Lukas Baker, www.linkedin.com/in/lukasbaker1331/, found with Google reverse image search, even though the LinkedIn image is very slightly different from the YouTube one.
As of 2023 he was a PhD student at NYU.
Now that we've done one section manually, let's graduate and use the readelf -S of the other sections:
  [Nr] Name              Type             Address           Offset
       Size              EntSize          Flags  Link  Info  Align
  [ 2] .text             PROGBITS         0000000000000000  00000210
       0000000000000027  0000000000000000  AX       0     0     16
.text is executable but not writable: if we try to write to it Linux segfaults. Let's see if we really have some code there:
objdump -d hello_world.o
gives:
hello_world.o:     file format elf64-x86-64


Disassembly of section .text:

0000000000000000 <_start>:
   0:       b8 01 00 00 00          mov    $0x1,%eax
   5:       bf 01 00 00 00          mov    $0x1,%edi
   a:       48 be 00 00 00 00 00    movabs $0x0,%rsi
  11:       00 00 00
  14:       ba 0d 00 00 00          mov    $0xd,%edx
  19:       0f 05                   syscall
  1b:       b8 3c 00 00 00          mov    $0x3c,%eax
  20:       bf 00 00 00 00          mov    $0x0,%edi
  25:       0f 05                   syscall
If we grep b8 01 00 00 on the hd, we see that this only occurs at 00000210, which is what the section says. And the Size is 27, which matches as well. So we must be talking about the right section.
This looks like the right code: a write followed by an exit.
The most interesting part is line a which does:
movabs $0x0,%rsi
to pass the address of the string to the system call. Currently, the 0x0 is just a placeholder. After linking happens, it will be modified to contain:
4000ba: 48 be d8 00 60 00 00    movabs $0x6000d8,%rsi
This modification is possible because of the data of the .rela.text section.
TODO understand.
Video 1.
Trapping Ions for Quantum Computing by Diana Craik (2019)
Source.
A basic introduction, but very concrete, with only a bit of math it might be amazing:
Sounds complicated, several technologies need to work together for that to work! Videos of ions moving are from www.physics.ox.ac.uk/research/group/ion-trap-quantum-computing.
A major flaw of this presentation is not explaining the readout process.
Video 2.
How To Trap Particles in a Particle Accelerator by the Royal Institution (2016)
Source. Demonstrates trapping pollen particles in an alternating field.
Video 4.
Introduction to quantum optics by Peter Zoller (2018)
Source. THE Zoller from Cirac–Zoller CNOT gate talks about his gate.
The key experiment/phenomena that sets the basis for photonic quantum computing is the two photon interference experiment.
The physical representation of the information encoding is very easy to understand:
  • input: we choose to put or not photons into certain wires or no
  • interaction: two wires pass very nearby at some point, and photons travelling on either of them can jump to the other one and interact with the other photons
  • output: the probabilities that photos photons will go out through one wire or another
Video 1.
Jeremy O'Brien: "Quantum Technologies" by GoogleTechTalks (2014)
Source. This is a good introduction to a photonic quantum computer. Highly recommended.

Pinned article: Introduction to the OurBigBook Project

Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 5. . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact