The term "Cousin problems" can refer to various contexts, including mathematical problems, computer science issues, or even social and familial contexts. However, one common mathematical context relates to a specific type of problem in number theory or combinatorial mathematics. In number theory, "cousin primes" are a pair of prime numbers that have a difference of 4. For example, (3, 7) and (7, 11) are examples of cousin primes.
In the context of sheaf theory and derived categories in algebraic geometry or topology, the term "direct image with compact support" typically refers to the operation that takes a sheaf defined on a space and produces a new sheaf on another space, while restricting to a compact subset. More concretely, let's break this down: 1. **Sheaf**: A sheaf is a tool for systematically tracking local data attached to the open sets of a topological space.
The Leray spectral sequence is a mathematical tool used in algebraic topology, specifically in the context of sheaf theory and the study of cohomological properties of spaces. It provides a way to compute the cohomology of a space that can be decomposed into simpler pieces, such as a fibration or a covering.
A sheaf of algebras is a mathematical structure that arises in the context of algebraic geometry and topology, integrating concepts from both sheaf theory and algebra. It provides a way to study algebraic objects that vary over a topological space in a coherent manner. ### Definitions and Concepts: 1. **Sheaf**: A sheaf is a tool for systematically tracking local data attached to the open sets of a topological space.
In the context of algebraic geometry and sheaf theory, the term "stalk" refers to a specific construction associated with a sheaf. A sheaf is a mathematical object that allows us to systematically track local data assigned to the open sets of a topological space.
An **ordered ring** is a mathematical structure that combines the properties of a ring with a total order. More formally, an ordered ring is defined as a ring \( R \) together with a total order \( \leq \) that satisfies certain compatibility conditions with the ring operations (addition and multiplication).
A **regular p-group** is a specific type of finite group that is defined in the context of group theory, particularly in relation to \( p \)-groups. A **\( p \)-group** is a group where the order (the number of elements) of the group is a power of a prime number \( p \).
Representation theory of finite groups is a branch of mathematics that studies how groups, particularly finite groups, can be represented through linear transformations of vector spaces. In simpler terms, it examines how abstract groups can be manifested as matrices or linear operators acting on vector spaces.
The concept of corepresentations of unitary and antiunitary groups arises primarily in the context of representation theory, which studies how groups act on vector spaces through linear transformations. In quantum mechanics and in many areas of physics, these groups often illustrate symmetries of systems, where unitary and antiunitary operators play significant roles. ### Unitary Groups Unitary operators are linear operators associated with a unitary group, which is a group of transformations that preserve inner products in complex vector spaces.
The Gelfand–Raikov theorem is a result in functional analysis and, more specifically, in the theory of Hilbert spaces. It provides conditions under which a certain type of operator can be approximated by a sequence of rank-one operators.
Representation theory of diffeomorphism groups is a mathematical framework that studies the actions of diffeomorphism groups on various spaces, particularly in the context of differential geometry, dynamical systems, and mathematical physics. Diffeomorphism groups are groups consisting of all smooth bijective mappings (diffeomorphisms) from a manifold to itself, equipped with a smooth structure, and they play a crucial role in understanding the symmetries and geometric structures of manifolds.
Schur–Weyl duality is a fundamental result in representation theory that describes a deep relationship between two types of algebraic structures: the symmetric groups and the general linear groups. Specifically, it provides a duality between representations of the symmetric group \( S_n \) and representations of the general linear group \( GL(V) \) (where \( V \) is a finite-dimensional vector space) for a fixed \( n \).
In group theory, a branch of abstract algebra, an **ascendant subgroup** of a group \( G \) is a specific type of subgroup that has a unique property concerning its relation to the whole group.
In group theory, a branch of abstract algebra, a **central subgroup** refers to a subgroup that is contained in the center of a given group. The center of a group \( G \), denoted \( Z(G) \), is defined as the set of all elements \( z \in G \) such that \( zg = gz \) for all \( g \in G \). In other words, the center consists of all elements that commute with every other element in the group.
A Hall subgroup is a concept from group theory, specifically in the study of finite groups. It is named after Philip Hall, who introduced the concept in his work on groups and combinatorics.
A **paranormal subgroup** is a concept in group theory, specifically in the area of finite group theory. A subgroup \( H \) of a group \( G \) is said to be paranormal if it meets a specific condition related to its normality and the structure of \( G \).
A pronormal subgroup is a specific type of subgroup in group theory, particularly in the context of finite groups. A subgroup \( H \) of a group \( G \) is said to be **pronormal** if, for every \( g \in G \), the intersection of \( H \) with \( H^g \) (the conjugate of \( H \) by \( g \)) is a normal subgroup of \( H \).
In the context of group theory, a **special abelian subgroup** usually refers to a specific type of subgroup within a group, particularly in the theory of finite groups or in the study of Lie algebras.

Pinned article: Introduction to the OurBigBook Project

Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 5. . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact