The Laplacian matrix is a representation of a graph that encodes information about its structure and connectivity. It is particularly useful in various applications such as spectral graph theory, machine learning, image processing, and more.
The matching polynomial is a well-defined polynomial associated with a graph that encapsulates information about its matchings—sets of edges without shared vertices.
The minimum rank of a graph is a concept from algebraic graph theory that is associated with the graph's adjacency matrix or Laplacian matrix. Specifically, it refers to the smallest rank among all real symmetric matrices corresponding to the graph.
A Seidel adjacency matrix is a type of matrix used in graph theory, particularly for the representation of certain types of graphs known as Seidel graphs. It is derived from the standard adjacency matrix of a graph but has a distinctive form.
Spectral clustering is a technique used in machine learning and data analysis for grouping data points into clusters based on the properties of the dataset. It leverages the eigenvalues and eigenvectors of matrices derived from the data, particularly the similarity matrix, to identify clusters. Here’s an overview of the key steps and concepts involved in spectral clustering: 1. **Similarity Graph**: First, a similarity graph is constructed from the data points.
Spectral graph theory is a branch of mathematics that studies the properties of graphs through the eigenvalues and eigenvectors of matrices associated with them. These matrices include the adjacency matrix, the degree matrix, and the Laplacian matrix, among others. Spectral graph theory connects combinatorial properties of graphs with linear algebra and provides powerful tools for analyzing graphs in various contexts.
Approximate fibration is a concept in algebraic topology and related fields that generalizes the notion of a fibration. In topology, a fibration is a specific type of mapping between spaces that has certain lifting properties, often characterized by a homotopy lifting property. The concept of approximate fibration arises when one relaxes some of these strict conditions.
The "calculus of functors" is a concept from category theory, a branch of mathematics that deals with abstract structures and the relationships between them. In more detail, it refers to methods and techniques for manipulating functors, which are mappings between categories that preserve the structures of those categories. ### Key Concepts: 1. **Categories**: A category consists of objects and morphisms (arrows) between those objects that satisfy certain properties (e.g., composition and identity).
A Moufang set is a concept from the field of mathematics, specifically in the context of algebra and geometry. It is related to the study of certain types of algebraic structures that exhibit properties reminiscent of groups but without necessarily adhering to all the group axioms.
The Tutte matrix is a mathematical construct used in the study of graph theory, particularly in the context of understanding the properties of bipartite graphs and the presence of perfect matchings. It is named after the mathematician W. T. Tutte.
A "two-graph" typically refers to a specific type of graph in the field of graph theory, but it might not be a widely standardized term. In general, graph theory involves studying structures made up of vertices (or nodes) connected by edges.
Metallic bonding is a type of chemical bonding that occurs between metal atoms. In this bond, electrons are not shared or transferred between individual atoms as seen in covalent or ionic bonds. Instead, metallic bonding involves a "sea of electrons" that are free to move around in a lattice of positive metal ions.
A **multiplicative character** is a type of mathematical function used in number theory, particularly in the context of Dirichlet characters and L-functions. Specifically, a multiplicative character is a homomorphism from the group of non-zero integers under multiplication to a finite abelian group, such as the group of complex numbers of modulus one.
Cylindric algebra is a mathematical structure that arises in the study of multi-dimensional logics and is particularly relevant in the fields of model theory and algebraic logic. It is an extension of Boolean algebras to accommodate more complex relationships involving multiple dimensions or "cylindrical" structures. A cylindric algebra can be thought of as an algebraic structure that captures the properties of relations in multiple dimensions, enabling the representation of various logical operations and relations.
The Leibniz operator is a differential operator used in the context of calculus, particularly in the formulation of differentiating products of functions. It is named after the mathematician Gottfried Wilhelm Leibniz, who made significant contributions to the development of calculus.
Polyadic algebra is a branch of algebra that extends the concept of traditional algebraic structures, such as groups, rings, and fields, to include operations that involve multiple inputs or arities. In particular, it focuses on operations that can take more than two variables (unlike binary operations, which are the most commonly studied).
Pinned article: Introduction to the OurBigBook Project
Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
Intro to OurBigBook
. Source. We have two killer features:
- topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculusArticles of different users are sorted by upvote within each article page. This feature is a bit like:
- a Wikipedia where each user can have their own version of each article
- a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.Figure 1. Screenshot of the "Derivative" topic page. View it live at: ourbigbook.com/go/topic/derivativeVideo 2. OurBigBook Web topics demo. Source. - local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
- to OurBigBook.com to get awesome multi-user features like topics and likes
- as HTML files to a static website, which you can host yourself for free on many external providers like GitHub Pages, and remain in full control
Figure 2. You can publish local OurBigBook lightweight markup files to either OurBigBook.com or as a static website.Figure 3. Visual Studio Code extension installation.Figure 5. . You can also edit articles on the Web editor without installing anything locally. Video 3. Edit locally and publish demo. Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension. - Infinitely deep tables of contents:
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact