Sablon diecast is a term that may refer to a specific brand or line of collectible diecast models, but as of my last knowledge update in October 2023, there isn't a widely recognized brand or standard product specifically named "Sablon diecast." Diecast models are typically made from a zinc alloy, often with plastic components, and are popular among collectors and hobbyists.
An **almost-contact manifold** is a type of differentiable manifold equipped with a structure that is somewhat analogous to that of contact manifolds, but not quite as strong.
The Crofton formula is a fundamental result in integral geometry that relates the length of a curve to the probability of randomly intersecting that curve using a family of lines. Specifically, it allows us to estimate the length of a curve in a geometric space by considering how many times random lines intersect it.
Curvature in the context of Riemannian manifolds is a fundamental concept in differential geometry that describes how a manifold bends or deviates from being flat. In a more intuitive sense, curvature provides a way to measure how the geometry of a manifold differs from that of Euclidean space. Here are some key aspects of curvature in Riemannian manifolds: ### 1.
Curved space refers to the concept in physics and mathematics where the geometry of a space is not flat but instead has curvature. This idea is primarily associated with Einstein's theory of General Relativity, which describes gravity not as a force in the traditional sense but as the effect of mass and energy curving spacetime. In flat (Euclidean) geometry, the shortest distance between two points is a straight line.
Singularity theory is a branch of mathematics that deals with the study of singularities or points at which a mathematical object is not well-behaved in some sense, such as points where a function ceases to be differentiable or where it fails to be defined. This theory is particularly relevant in geometry and topology but also has applications in various fields such as physics, economics, and even robotics.
In mathematics, a smooth function is a type of function that has derivatives of all orders. More formally, a function \( f: \mathbb{R}^n \to \mathbb{R} \) is considered to be smooth if it is infinitely differentiable, meaning that not only does the function have a derivative, but all of its derivatives exist and are continuous.
Affine curvature is a concept from differential geometry, particularly in the study of affine differential geometry, which focuses on the properties of curves and surfaces that are invariant under affine transformations (linear transformations that preserve points, straight lines, and planes). In more detail, affine curvature pertains to the curvature of an affine connection, which is a way to define parallel transport and consequently, the notion of curvature in a space that doesn't necessarily have a metric (length) structure like Riemannian geometry.
Affine geometry is a branch of geometry that studies the properties of figures that remain invariant under affine transformations, which include linear transformations and translations. In the context of curves, affine geometry focuses on characteristics that do not change when a curve is subjected to such transformations.
An Arithmetic Fuchsian group is a type of Fuchsian group, which is a group of isometries of the hyperbolic plane. To understand Arithmetic Fuchsian groups, it's helpful to break down the components of the term: 1. **Fuchsian Groups**: These are groups of isometries of the hyperbolic plane, which means they consist of transformations that preserve the hyperbolic metric.
The term "associate family" can refer to different concepts depending on the context in which it's used. Here are a couple of potential meanings: 1. **Sociological Context**: In sociology, an "associate family" might refer to a family structure that includes members who are related by more than just traditional kinship ties. This could include close friends or non-relatives who live together and support each other, demonstrating familial characteristics despite not being biologically related.
In the context of differential geometry and mathematical physics, a **connection** (often referred to as a **connection on a bundle**) is a way to "connect" points in a fiber bundle, allowing for a definition of parallel transport, differentiation of sections of the bundle, and the curvature associated with the connection. ### Composite Bundle A **composite bundle** is a specific structure in the theory of fiber bundles that combines two or more fiber bundles in a certain way.
Chern's conjecture for hypersurfaces in spheres relates to the behavior of certain types of complex manifolds, particularly in the context of algebraic geometry and differential geometry. More specifically, it postulates a relationship between the curvature of a hypersurface and the topology of the manifold it resides in. In the case of hypersurfaces in spheres, the conjecture suggests that there exists a relationship between the total curvature of a hypersurface and the degree of the hypersurface when embedded in a sphere.
Complex hyperbolic space, often denoted as \(\mathbb{H}^{n}_{\mathbb{C}}\), is a complex manifold that serves as a model of a non-Euclidean geometry. It can be thought of as the complex analogue of hyperbolic space in real geometry and plays a significant role in several areas of mathematics, including geometry, topology, and complex analysis.
A differentiable curve is a mathematical concept referring to a curve that can be described by a differentiable function. In a more formal sense, a curve is said to be differentiable if it is possible to compute its derivative at every point in its domain. For a curve defined in a two-dimensional space, represented by a function \( y = f(x) \), it is differentiable at a point if the derivative \( f'(x) \) exists at that point.
Differential forms are an essential concept in differential geometry and mathematical analysis. They generalize the idea of functions and can be used to describe various physical and geometric phenomena, particularly in the context of calculus on manifolds. Here's an overview of what differential forms are: ### Definition: A **differential form** is a mathematical object that is fully defined on a differentiable manifold.
The last geometric statement of Jacobi, often referred to as Jacobi's last theorem, pertains to the geometry of curves and is essentially connected to elliptic functions and their relation to algebraic curves. In its simplest form, Jacobi's last theorem asserts that if a non-singular algebraic curve can be parameterized by elliptic functions, then the degree of the curve must be 3 (a cubic curve).
Eguchi-Hanson space is a specific example of a Ricci-flat manifold that arises in the study of gravitational theories in higher dimensions, particularly in the context of string theory and differential geometry. It is a four-dimensional, asymptotically locally Euclidean manifold that can be described as follows: 1. **Metric Structure**: The Eguchi-Hanson space can be understood as a self-dual solution to the Einstein equations with a negative cosmological constant.
The Frölicher–Nijenhuis bracket is a mathematical construct that comes from the field of differential geometry and differential algebra. It is a generalization of the Lie bracket, which is typically defined for vector fields. The Frölicher–Nijenhuis bracket allows us to define a bracket operation for arbitrary differential forms and multilinear maps.
"Evolute" can refer to different concepts depending on the context. Here are a few possibilities: 1. **Mathematics**: In mathematics, particularly in differential geometry, an evolute is the locus of the centers of curvature of a given curve. It captures the idea of how the curvature of the original curve behaves and represents the "envelope" of the normals to that curve. 2. **Business/Technology**: Evolute may refer to companies or products that carry the name.
Pinned article: Introduction to the OurBigBook Project
Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
Intro to OurBigBook
. Source. We have two killer features:
- topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculusArticles of different users are sorted by upvote within each article page. This feature is a bit like:
- a Wikipedia where each user can have their own version of each article
- a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.Figure 1. Screenshot of the "Derivative" topic page. View it live at: ourbigbook.com/go/topic/derivativeVideo 2. OurBigBook Web topics demo. Source. - local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
- to OurBigBook.com to get awesome multi-user features like topics and likes
- as HTML files to a static website, which you can host yourself for free on many external providers like GitHub Pages, and remain in full control
Figure 3. Visual Studio Code extension installation.Figure 4. Visual Studio Code extension tree navigation.Figure 5. Web editor. You can also edit articles on the Web editor without installing anything locally.Video 3. Edit locally and publish demo. Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.Video 4. OurBigBook Visual Studio Code extension editing and navigation demo. Source. - Infinitely deep tables of contents:
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact





