If we pick k elements of the set, the stabilizer subgroup of those k elements is a subgroup of the given permutation group that keeps those elements unchanged.
Note that an analogous definition can be given for non-finite groups. Also note that the case for all finite groups is covered by the permutation definition since all groups are isomorphic to a subgroup of the symmetric group
TODO existence and uniqueness. Existence is obvious for the identity permutation, but proper subgroup likely does not exist in general.
Group of all permutations.
Our notation: , called "dihedral group of degree n", means the dihedral group of the regular polygon with sides, and therefore has order (all rotations + flips), called the "dihedral group of order 2n".
All possible repetitive crystal structures!
219 of them.
As shown in Video "Simple Groups - Abstract Algebra by Socratica (2018)", this can be split up into two steps:This split is sometimes called the "Jordan-Hölder program" in reference to the authors of the jordan-Holder Theorem.
Good lists to start playing with:
History: math.stackexchange.com/questions/1587387/historical-notes-on-the-jordan-h%C3%B6lder-program
It is generally believed that no such classification is possible in general beyond the simple groups.
This dude has done well.
These are basically technically minded people that Ciro Santilli feels have similar interests/psychology to him, and who write too much for their own good:
- cat-v.org
- gwern.net. Dude's a bit overly obsessed with the popup preview though! "new Wikipedia popups (this 7th implementation enables recursive WP popups)" XD
- settheory.net by Sylvain Poirier
- HyperPhysics
- Orange Papers
Maybe one day these will also be legendary, who knows:
Another category Ciro admires are the "computational physics visualization" people, these people will go to Heaven:
Related:
Institution led:
- www.biology.arizona.edu/ The Biology Project
Other mentions:
- arngren.net/ lots of images of toys and gear with descriptions in Norwegian
en.wikipedia.org/w/index.php?title=Mathieu_group&oldid=1034060469#Multiply_transitive_groups is a nice characterization of 4 of the Mathieu groups.
Pinned article: Introduction to the OurBigBook Project
Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
Intro to OurBigBook
. Source. We have two killer features:
- topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculusArticles of different users are sorted by upvote within each article page. This feature is a bit like:
- a Wikipedia where each user can have their own version of each article
- a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.Figure 1. Screenshot of the "Derivative" topic page. View it live at: ourbigbook.com/go/topic/derivativeVideo 2. OurBigBook Web topics demo. Source. - local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
- to OurBigBook.com to get awesome multi-user features like topics and likes
- as HTML files to a static website, which you can host yourself for free on many external providers like GitHub Pages, and remain in full control
Figure 3. Visual Studio Code extension installation.Figure 4. Visual Studio Code extension tree navigation.Figure 5. Web editor. You can also edit articles on the Web editor without installing anything locally.Video 3. Edit locally and publish demo. Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.Video 4. OurBigBook Visual Studio Code extension editing and navigation demo. Source. - Infinitely deep tables of contents:
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact





