The Education Index is a composite measure used to assess the level of educational attainment and the quality of education in a particular region or country. It is part of the Human Development Index (HDI) and serves to provide insights into the overall development and well-being of a population. The Education Index typically comprises two key indicators: 1. **Mean Years of Schooling**: This measures the average number of years of education received by people aged 25 and older in a given population.
The G-index is a metric used to assess the productivity and citation impact of academic publications. It is an enhancement of the more commonly known h-index. The G-index was proposed by Leo Egghe in 2006 and aims to address some of the limitations of the h-index. ### Definition: The G-index is defined such that a researcher has a G-index of "g" if they have published "g" papers that have each received, on average, at least "g" citations.
The Process Performance Index (Ppk) is a statistical measure used to evaluate the capability of a manufacturing process. It quantifies how well a process can produce output that meets specification limits. Ppk is particularly useful in situations where the process is not centered between the specification limits, as it takes into account both the process variability and the mean of the process output. **Key points about Ppk:** 1.
The Renkonen similarity index is a measure used to quantify the similarity between two or more samples based on the presence and abundance of species or other categorical data. It was developed in the context of ecological studies to compare community compositions.
An Achilles number is a positive integer that is a powerful number but not a perfect power. A powerful number is defined as a number \( n \) such that in its prime factorization, every prime number \( p \) appears with an exponent of at least 2. In contrast, a perfect power is a number of the form \( m^k \) where \( m \) and \( k \) are positive integers and \( k \geq 2 \).
An arithmetico-geometric sequence is a sequence in which each term is generated by multiplying an arithmetic sequence by a geometric sequence. In simple terms, it combines the elements of arithmetic sequences (which have a constant difference between consecutive terms) and geometric sequences (which have a constant ratio between consecutive terms).
The Beatty sequence is a sequence of numbers that can be derived from the mathematical concept of filling the real line with two sequences whose terms are the floor functions of the multiples of two irrational numbers.
Betrothed numbers are a pair of positive integers \( (m, n) \) such that each number plus one equals the sum of the other number's proper divisors. In formal terms, if \( \sigma(n) \) denotes the sum of the divisors of \( n \), then \( m \) and \( n \) are betrothed if the following conditions hold: 1. \( \sigma(m) - m = n + 1 \) 2.
A "cake number" refers to a concept in combinatorial mathematics related to how many pieces a cake can be divided into with a given number of straight cuts. Specifically, the "cake number" is defined as the maximum number of pieces into which a cake can be divided using \( n \) straight cuts in three-dimensional space.
A derangement is a specific type of permutation of a set of elements where none of the elements appear in their original position. In other words, if you have a set of objects and wish to rearrange them such that no object remains in its initial position, that arrangement is referred to as a derangement. For example, consider the set of objects {1, 2, 3}.
An elliptic divisibility sequence (EDS) is a sequence of integers that arises from the theory of elliptic curves and has interesting divisibility properties. These sequences are generated based on the coordinates of points on an elliptic curve, typically given in Weierstrass form. The properties of EDSs are linked to the arithmetic of elliptic curves, particularly their group structure.
Goodstein's theorem is a result in mathematical logic and number theory that deals with a particular sequence of natural numbers known as Goodstein sequences. The theorem states that every Goodstein sequence eventually terminates at 0, despite the fact that the terms of the sequence can grow extremely large before reaching 0. To understand Goodstein's theorem, we first need to define how a Goodstein sequence is constructed: 1. **Starting Point**: Begin with a natural number \( n \).
A harmonic divisor number is a concept in number theory related to the harmonic mean of the divisors of a number. Specifically, an integer \( n \) is called a harmonic divisor number if the sum of the reciprocals of its divisors is an integer.
A **hemiperfect number** is a type of integer that is related to the concept of perfect numbers and their generalizations. Specifically, a positive integer \( n \) is considered a hemiperfect number if there exists a subset of its proper divisors (the divisors excluding itself) such that the sum of the divisors in that subset equals \( n \).
A highly composite number is a positive integer that has more divisors than any smaller positive integer. In other words, it is a number that has a greater number of divisors than all the integers less than it. The concept of highly composite numbers was introduced by the mathematician Srinivasa Ramanujan.
A home prime is a concept in number theory that relates to the representation of numbers as sums of prime numbers. Specifically, a home prime is produced by repeatedly factoring a composite number into its prime factors, then concatenating those prime factors (written in order), and repeating the process until a prime number is obtained. Here’s how it works in detail: 1. Start with a composite number. 2. Factor it into its prime factors.
Integer complexity is a concept in number theory that refers to the minimum number of ones needed to express a positive integer \( n \) using just addition, multiplication, and parentheses. The complexity of an integer is denoted as \( C(n) \). For example: - The integer \( 1 \) has a complexity of \( C(1) = 1 \) because it can be represented as simply using one "1".
The Katydid sequence, also known as the "katydid word sequence," is a specific sequence of numbers defined by a recursive process based on the number of syllables in the word "katydid." The word "katydid" has three syllables, which influences the way the sequence is constructed. To generate the Katydid sequence: 1. Start with the first term as \( a_1 = 1 \).
Pinned article: ourbigbook/introduction-to-the-ourbigbook-project
Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
Intro to OurBigBook
. Source. We have two killer features:
- topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculusArticles of different users are sorted by upvote within each article page. This feature is a bit like:
- a Wikipedia where each user can have their own version of each article
- a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.Figure 1. Screenshot of the "Derivative" topic page. View it live at: ourbigbook.com/go/topic/derivativeVideo 2. OurBigBook Web topics demo. Source. - local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
- to OurBigBook.com to get awesome multi-user features like topics and likes
- as HTML files to a static website, which you can host yourself for free on many external providers like GitHub Pages, and remain in full control
Figure 2. You can publish local OurBigBook lightweight markup files to either OurBigBook.com or as a static website.Figure 3. Visual Studio Code extension installation.Figure 5. . You can also edit articles on the Web editor without installing anything locally. Video 3. Edit locally and publish demo. Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension. - Infinitely deep tables of contents:
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact