The Scanning Electron Microscope by MaterialsScience2000 (2014)
Source. Shows operation of the microscope really well. Seems too easy, there must have been some extra setup before however. Impressed by how fast the image update, it is basically instantaneous. Produced by Prof. Dr.-Ing. Rainer Schwab from the Karlsruhe University of Applied Sciences.Mosquito Eye Scanning Electron Microscope Zoom by Mathew Tizard (2005)
Source. Video description mentions is a composite video. Why can't you do it in one shot?It sees and moves individual atoms!!!
Transmission Electron Microscope by LD SEF (2019)
Source. Images some gold nanopraticles 5-10 nm. You can also get crystallographic information directly on the same machine.This technique has managed to determine protein 3D structures for proteins that people were not able to crystallize for X-ray crystallography.
It is said however that cryoEM is even fiddlier than X-ray crystallography, so it is mostly attempted if crystallization attempts fail.
We just put a gazillion copies of our molecule of interest in a solution, and then image all of them in the frozen water.
Each one of them appears in the image in a random rotated view, so given enough of those point of view images, we can deduce the entire 3D structure of the molecule.
Ciro Santilli once watched a talk by Richard Henderson about cryoEM circa 2020, where he mentioned that he witnessed some students in the 1980's going to Germany, and coming into contact with early cryoEM. And when they came back, they just told their principal investigator: "I'm going to drop my PhD theme and focus exclusively on cryoEM". That's how hot the cryo thing was! So cool.
How hard could it be? You just have to learn the encoding of the neural spine/eyes/ear, add an invasive device that multiplexes it, and then the benefits could be mind blowing.
Super-resolution means resolution beyond the diffraction limit.
They you can observe fluorophores firing one by one. Their exact position is a bit stochastic and beyond the diffraction limit, but so long as there aren't to many in close proximity, you can wait for it to fire a bunch of times, and the center of the Gaussian is the actual location.
From this we see that super-resolution microscopy is basically a space-time tradeoff: the more time we wait, the better spacial resolution we get. But we can't do it if things are moving too fast in the sample.
Tradeoff with cryoEM: you get to see things moving in live cell. Electron microscopy fully kills cells, so you have no chance of seeing anything that moves ever.
Caveats:
- initial illumination to saturate most fluorophores I think can still kill cells, things get harder the less light you put in. So it's not like you don't kill things at all necessarily, you just get a chance not to
- the presence fluorophore disturbs the system slightly, and is not at the same Exact location of the protein of interest
Instead of shining a light over the entire sample to saturate it, you illuminate just a small bit instead.
He was basically saying that this truly brings the resolution to the actual physical limits, going much much beyond 2014 Nobel prize levels.
What big companies have been created in Europe after World War II, that have not been bought or utterly defeated by American or Japanese companies?Because of all these failures, much fanfare was made as Spotify reached a $50B market capitalization in 2020. An art company, so cute!
- International Computers Limited fully bought by Fujitsu in 1998 after a long decline. The Fujitsu Wikipedia entry contains the emblematic image caption:So much for The Queen. This was a prelude to Arm's sale somewhat.
The Fujitsu office in Bracknell, United Kingdom, formerly an ICL site and opened by HM the Queen in 1976
- Solexa sold to Illumina (American company) for 600M USD in 2007. As of 2020 is still the basis for the dominant DNA sequencing technology in the world
- CSR sold to Qualcomm (American company) for 2.5B USD in 2015
- Dotmatics sold to Insightful Science for $690M[ref] in 2021. To add insult to inujury, Insightful changed its brand to Dotmatics later on.
- Arm sold to Softbank (32B USD in 2016)? ARM being of course the fortunate leftover of Acorn Computers's defeat to the more edible Apple
As of 2023, the LVMH was the most valuable company in Europe by market capitalization[ref]. Luxury goods. An area of industry that borders between the useless and the evil.
Europe has basically become an outsourcing hub for the United States. The fact that its starts are all sold if they become large enough just means that R&D is also outsourced.
ASML, and perhaps more meaningfully its parent/predecessor ASM International from 1964 is perhaps the biggest exception.
The key problem is that there are so many small countries in Europe, that any startup has to deal with too many incompatible legislation and cannot easily sell to the hole of Europe and scale. So then a larger company from a more uniform country comes and eats it up!
Talent mobility is another issue:
- people can't generally work remotely from different countries for the same company as regular employees, only as contractors. This is because of fiscal incompatibilities across countries[ref][ref], and has become an increasing problem in the 2020's with the increase in remote work possibilities during/after COVID-19.
- it is quite rare for people to study at university in different countries than their own, because the entry examinations are in the native language and have local history knowledge components. This also means that people from different countries don't easily recognize which are the best Universities of other countries, making you take a hit if you want to search for jobs elsewhere
Because the countries are still essentially walled off by languages. Europe is the perfect example of why having more than one natural language is bad for the world.
You just can't go study or work in any other country (except for the UK, when it was still in the EU) without putting a huge effort into learning its language first.
Without this, there isn't enough mixing to truly make cultures more uniform, and therefore allow the laws to be more uniform.
Europe can't even unify basic things like:
- a marriage registry
- the mail system, parcels often getting lost and require you to contact people who may not speak English
- the train systems: www.linkedin.com/posts/hinrich-thoelken_cop26-activity-6863490595072045057-Xhlg/
Equally so, it can't force little fiscal paradises who effectively benefit from being in Europe like Ireland, Luxembourg, Monaco, Switzerland ("not European", but should that be allowed?) and Cyprus (the EU can't even maintain its territorial integrity, let alone fiscal) to not offer ridiculously low taxes and incentives which make them entry points for foreign companies to rape Europe.
For this reason, Europe will only continue to go downhill with the years, and the United Kingdom will continue to try and endosymbiose into a state of the United States (although at times it seems that it would rather endosymbiose with China instead). On 2025 the British parliament beautifully put it that the country:
Historically, this disunion is partly due to the European balance of power, whereby countries would form alliances with old enemies to prevent another country from taking over. Also linked are failed military unification attempts by Napoleon and Hitler, though we are likely better off without the latter succeeding!!! Though those also partly failed due to wider balance of power issues involving the United Kingdom, the Soviet Union and USA, not only due to internal balance. Of course, none of that matters anymore after World War II, where other more unified Europe-sized potencies rose, first the USA and the Soviet Union, and then China, and now European disunion is nothing but a burden.
One thing must be said in favour of Europe's mess however: it favours international collaboration in huge projects as a more neutral middle ground. This can be seen more clearly in the ITER and the fiasco that was the Superconducting Super Collider that was cancelled a couple of billion dollars in partly because it failed to attract any foreign investment, compared to the Large Hadron Collider which went on to find the Higgs boson as mentioned at www.scientificamerican.com/article/the-supercollider-that-never-was/.
Bibliography:
- www.politico.eu/article/ursula-von-der-leyen-mission-europe-economy/ Von der Leyen's mission: Stop Europe's 'slow agony' of decline (2024)
Two Photon Microscopy by Nemonic NeuroNex (2019)
Source. Shows a prototype of a two-photon electron microscope on an optical table, and describes it in good detail, well done.If you are a pussy and work a soul crushing job, this is one way to lie to yourself that your life is still worth living: do one cool thing every day.
Find a time in which your mind hasn't yet been destroyed by useless work, usually in the morning before work, and do one thing you actually like in life.
Work a little less well for you boss, and a little better for yourself. Ross Ulbricht:Selling drugs online is not advisable however.
Even better, try to reach an official agreement with your employer to work 20% less than the standard work week. For example, you could work one day less every week, and do whatever you want on that day. It is not possible to push your passion to weekends, because your brain is too tired. "You keep all non-company-related IP you develop on that time" is a key clause obviously.
On a related note, good employers must allow employees to do whichever the fuck "crazy projects", "needed refactorings or other efficiency gains" and "learn things deeply" at least 20% of their time if employees want that: en.wikipedia.org/wiki/20%25_Project. Employees must choose if they want to do it one day a week or two hours per day. One day per month initiatives are bullshit. Another related name: genius hour.
Highly relevant on this topic: Video "What Predicts Academic Ability? by Jordan B Peterson (2017)".
I did it for me, Skyler
. Source. Pursuing a dream part time can make you feel afraid and tired. But at least, you will feel alive.Maybe you will be fired, but long term, having tried, or even succeeded your dream, or a one of its side effects, will be infinitely more satisfying.
The same goes for school, and maybe even more so because your parents can still support you there. Some Gods who actually followed this advice and didn't end up living under a bridge:
- George M. Church "[We] hope that whatever problems... contributed to your lack of success... at Duke will not keep you from a successful pursuit of a productive career." Lol, as of 2019 the dude is the most famous biotechnologist in the world, those "problems" certainly didn't keep him back.
- Freeman Dyson proved the equivalence of the three existing versions of quantum electrodynamics theories that were around at his time, and he has always been proud of not having a PhD!
- Ramanujan, from Wikipedia:
He received a scholarship to study at Government Arts College, Kumbakonam, but was so intent on mathematics that he could not focus on any other subjects and failed most of them, losing his scholarship in the process.
- Person that Ciro met personally and shall remain anonymous for now for his privacy: once Ciro was at a bar with work colleagues casually, it was cramped, and an older dude sat next to his group.The dude then started a conversation with Ciro, and soon he explained that he was a mathematician and software engineer.As a Mathematician, he had contributed to the classification of finite simple groups, and had a short Wiki page because of that.He never did a PhD, and said that academia was a waste of time, and that you can get as much done by working part time a decent job and doing your research part time, since you skip all the bullshit of academia like this.Yet, he was still invited by collaborating professors to give classes on his research subject in one of the most prestigious universities in the world. Students would call him Doctor X., and he would correct them: Mister X.As a software engineer, he had done a lot of hardcore assembly level optimizations for x86 for some mathematical libraries related to his mathematics interests. He started talking microarchitecture with Ciro's colleagues.
One of its main applications is to determine the 3D structure of proteins.
Sometimes you are not able to crystallize the proteins however, and the method cannot be used.
Crystallizing is not simple because:
Cryogenic electron microscopy can sometimes determine the structures of proteins that failed crystallization.
Often used as a synonym for X-ray crystallography, or to refer more specifically to the diffraction part of the experiment (exluding therefore sample preparation and data processing).
cyclotrons produce the better images, but they are expensive/you have to move to them and order a timeslot.
Lab-based just use some X-ray source from the lab, so it is much move convenient e.g. for a pharmaceutical company doing a bunch of images. The Wikipedia image shows such a self-contained lab system: en.wikipedia.org/wiki/File:Freezed_XRD.jpg
Pinned article: Introduction to the OurBigBook Project
Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
Intro to OurBigBook
. Source. We have two killer features:
- topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculusArticles of different users are sorted by upvote within each article page. This feature is a bit like:
- a Wikipedia where each user can have their own version of each article
- a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.Figure 1. Screenshot of the "Derivative" topic page. View it live at: ourbigbook.com/go/topic/derivativeVideo 2. OurBigBook Web topics demo. Source. - local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
- to OurBigBook.com to get awesome multi-user features like topics and likes
- as HTML files to a static website, which you can host yourself for free on many external providers like GitHub Pages, and remain in full control
Figure 3. Visual Studio Code extension installation.Figure 4. Visual Studio Code extension tree navigation.Figure 5. Web editor. You can also edit articles on the Web editor without installing anything locally.Video 3. Edit locally and publish demo. Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.Video 4. OurBigBook Visual Studio Code extension editing and navigation demo. Source. - Infinitely deep tables of contents:
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact








