Micro Bit by Ciro Santilli 37 Updated 2025-07-27
Bluetooth support: not enough RAM for it, though in principle its chip/transceiver could support it! microbit-micropython.readthedocs.io/en/v1.0.1/ble.html
Supported editors: microbit.org/code/
Everything in this section is tested on the Micro Bit v1 from Micro Bit v1 unless otherwise noted.
https://upload.wikimedia.org/wikipedia/en/thumb/a/a3/Micro-bit_v1_%26_v2.JPG/1024px-Micro-bit_v1_%26_v2.JPG
MakeCode Miro Bit by Ciro Santilli 37 Updated 2025-07-16
Microbit simulator using some Microsoft framework.
TODO the Python code from there does not seem to run on the microbit via uflash, because it is not MicroPython.
forum.makecode.com/t/help-understanding-local-build-options/6130 asks how to compile locally and suggests it is possible. Seems to require Yotta, so presumably compiles?
Presumably this is because Microsoft ported their MakeCode thing to the MicroBit, and the Micro Bit foundation accepted them.
E.g. there toggling a LED:
led.toggle(0, 0)
but the code that works locally is a completely differently named API set_pixel:
microbit.display.set_pixel(0, 0, )
Microsoft going all in on adopt extend extinguish from an early age!
When plugged into Ubuntu 22.04 via the USB Micro-B the Micro Bit mounts as:
/media/$USER/MICROBIT/
e.g.:
/media/ciro/MICROBIT/
for username ciro.
Loading the program is done by simply copying a .hex binary into the image e.g. with:
cp ~/Downloads/microbit_program.hex /media/$USER/MICROBIT/
The file name does not matter, only the .hex extension.
The back power light flashes while upload is happening.
Flashing takes about 10-15 seconds for the 1.8 MB scroll display hello world from microbit-micropython.readthedocs.io/en/v1.0.1/tutorials/hello.html:
from microbit import *
display.scroll("Hello, World!")
and the program starts executing immediately after flash ends.
You can restart the program by clicking the reset button near the USB. When you push down the program dies, and it restarts as soon as you release the button.
users.ox.ac.uk/~corp0014/B6-lectures.html gives a syllabus:
Problem set dated 2015: users.ox.ac.uk/~corp0014/B6-materials/B6_Problems.pdf Marked by: A. Ardavan and T. Hesjedal. Some more stuff under: users.ox.ac.uk/~corp0014/B6-materials/
The book is the fully commercial The Oxford Solid State Basics.
To use a prebuilt firmware, you can just use uflash, tested on Ubuntu 22.04:
git clone https://github.com/bbcmicrobit/micropython
cd micropython
git checkout 7fc33d13b31a915cbe90dc5d515c6337b5fa1660
uflash examples/led_dance.py
What that does is:
TODO didn't manage from source Ubuntu 22.04, their setup bitrotted way too fast... it's shameful even. Until I gave up and went for the magic Docker of + github.com/bbcmicrobit/micropython, and it bloody worked:
git clone https://github.com/bbcmicrobit/micropython
cd micropython
git checkout 7fc33d13b31a915cbe90dc5d515c6337b5fa1660
docker pull ghcr.io/carlosperate/microbit-toolchain:latest
docker run -v $(pwd):/home --rm ghcr.io/carlosperate/microbit-toolchain:latest yt target bbc-microbit-classic-gcc-nosd@https://github.com/lancaster-university/yotta-target-bbc-microbit-classic-gcc-nosd
docker run -v $(pwd):/home --rm ghcr.io/carlosperate/microbit-toolchain:latest make all

# Build one.
tools/makecombinedhex.py build/firmware.hex examples/counter.py -o build/counter.hex
cp build/counter.hex "/media/$USER/MICROBIT/"

# Build all.
for f in examples/*; do b="$(basename "$f")"; echo $b; tools/makecombinedhex.py build/firmware.hex "$f" -o "build/${b%.py}.hex"; done
The pre-Docker attempts:
sudo add-apt-repository -y ppa:team-gcc-arm-embedded
sudo apt update
sudo apt install gcc-arm-embedded
sudo apt install cmake ninja-build srecord libssl-dev

# Rust required for some Yotta component, OMG.
sudo snap install rustup
rustup default 1.64.0

python3 -m pip install yotta
The line:
sudo add-apt-repository -y ppa:team-gcc-arm-embedded
warns:
E: The repository 'https://ppa.launchpadcontent.net/team-gcc-arm-embedded/ppa/ubuntu jammy Release' does not have a Release file.
N: Updating from such a repository can't be done securely, and is therefore disabled by default.
N: See apt-secure(8) manpage for repository creation and user configuration details.
and then the update/sudo apt-get install gcc-arm-embedded fails, bibliography:
Attempting to install Yotta:
sudo -H pip3 install yotta
or:
python3 -m pip install --user yotta
was failing with:
Exception: Version mismatch: this is the 'cffi' package version 1.15.1, located in '/tmp/pip-build-env-dinhie_9/overlay/local/lib/python3.10/dist-packages/cffi/api.py'.  When we import the top-level '_cffi_backend' extension module, we get version 1.15.0, located in '/usr/lib/python3/dist-packages/_cffi_backend.cpython-310-x86_64-linux-gnu.so'.  The two versions should be equal; check your installation.
Running:
python3 -m pip install --user cffi==1.15.1
did not help. Bibliography:
From a clean virtualenv, it appears to move further, and then fails at:
Building wheel for cmsis-pack-manager (pyproject.toml) ... error
error: [Errno 2] No such file or directory: 'cargo'
So we install Rust and try again, OMG:
sudo snap install rustup
rustup default stable
which at the time of writing was rustc 1.64.0, and then OMG, it worked!! We have the yt command.
However, it is still broken, e.g.:
git clone https://github.com/lancaster-university/microbit-samples
cd microbit-samples
git checkout 285f9acfb54fce2381339164b6fe5c1a7ebd39d5
cp source/examples/invaders/* source
yt clean
yt build
blows up:
annot import name 'soft_unicode' from 'markupsafe'
bibliography:
Micro Bit example by Ciro Santilli 37 Updated 2025-07-16
Micro Bit GPIO by Ciro Santilli 37 Updated 2025-07-16
Pinout overview: makecode.microbit.org/device/pins Basically 0, 1, and 2 are the truly generic ones. They can also serve as ADCs.
In the 2010's/2020's, many people got excited about getting children in to electronics with cheap devboards, notably with Raspberry Pi and Arduino.
While there is some potential in that, Ciro Santilli always felt that this is very difficult to do, while also keeping his sacred principle of backward design in mind.
The reason for this is that "everyone" already has much more powerful computers at hand: their laptops/desktops and even mobile phones as of the 2020s. Except perhaps if you are thing specifically about poor countries.
Therefore, the advantage using such devboards for doing something that could useful must come from either:
Devboard battery power by Ciro Santilli 37 Updated 2025-07-16
Many devborads require a 5V power supply.
This is common on wall transformers and USB, but not in batteries.
For battery power you need a transformer.
Many/most microcontroller boards have analog-to-digital converters built into them, it is very convenient. E.g. it is the case for the Raspberry Pi Pico.
Video 1.
Open Source 8.5 Digit Voltmeter from CERN by Marco Reps (2021)
Source.

Pinned article: Introduction to the OurBigBook Project

Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 2.
    You can publish local OurBigBook lightweight markup files to either https://OurBigBook.com or as a static website
    .
    Figure 3.
    Visual Studio Code extension installation
    .
    Figure 4.
    Visual Studio Code extension tree navigation
    .
    Figure 5.
    Web editor
    . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
    Video 4.
    OurBigBook Visual Studio Code extension editing and navigation demo
    . Source.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact