Bessel function by Ciro Santilli 37 Updated 2025-07-16
Shows up when trying to solve 2D wave equation on a circular domain in polar coordinates with separation of variables, where we have to decompose the initial condition in termes of a fourier-Bessel series, exactly like the Fourier series appears when solving the wave equation in linear coordinates.
For the same fundamental reasons, also appears when calculating the Schrödinger equation solution for the hydrogen atom.
Steven Pruitt by Ciro Santilli 37 Updated 2025-07-16
Video 1.
Meet the man behind a third of what's on Wikipedia
. Source.
Nabla symbol by Ciro Santilli 37 Updated 2025-07-16
Nabla is one of those: it was completely made up in modern times, and just happens to look like an inverted upper case delta to make things even more confusing!
Nabla means "harp" in Greek, which looks like the symbol.
Hyperplane by Ciro Santilli 37 Updated 2025-07-16
Generalization of a plane for any number of dimensions.
Kind of the opposite of a line: the line has dimension 1, and the plane has dimension D-1.
In , both happen to coincide, a boring example of an exceptional isomorphism.
And of course, 4chan just takes that to a whole new level, usually closing on the same day, and then getting deleted within a week. Why would anyone contribute non-illegal content to that king of system?!
Ridiculous, so when new information comes out, we just duplicate all the old comments on a new thread again?
Remember, Ciro Santilli is the Necromancer God.
E-learning website by Ciro Santilli 37 Updated 2025-07-16
Generally, if something is labelled as "e-learning", it's not a good sign, as it implies that it adheres to the "teacher"/"student" separation which Ciro Santilli much despises: E-learning websites must allow students to create learning content.
Solution for given and of:
where is the exponential map.
If we consider just real number, , but when X and Y are non-commutative, things are not so simple.
Furthermore, TODO confirm it is possible that a solution does not exist at all if and aren't sufficiently small.
This formula is likely the basis for the Lie group-Lie algebra correspondence. With it, we express the actual group operation in terms of the Lie algebra operations.
Notably, remember that a algebra over a field is just a vector space with one extra product operation defined.
Since a group is basically defined by what the group operation does to two arbitrary elements, once we have that defined via the Baker-Campbell-Hausdorff formula, we are basically done defining the group in terms of the algebra.
One parameter subgroup by Ciro Santilli 37 Updated 2025-07-16
The one parameter subgroup of a Lie group for a given element of its Lie algebra is a subgroup of given by:
Intuitively, is a direction, and is how far we move along a given direction. This intuition is especially vivid in for example in the case of the Lie algebra of , the rotation group.
One parameter subgroups can be seen as the continuous analogue to the cycle of an element of a group.

Pinned article: Introduction to the OurBigBook Project

Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 5. . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact