The term "magic angle" in the context of Electron Energy Loss Spectroscopy (EELS) relates to the angle at which a sample is tilted to optimize the resolution and signal quality in the measurement of energy losses in electrons transmitted through a thin material. In EELS, the "magic angle" typically refers to an angle of approximately 54.
A microprobe is a scientific instrument used to analyze the composition of small samples of material at a microscale. It employs various techniques to determine the chemical and physical properties of materials, often down to the level of individual grains or particles. Microprobes can be used in a wide range of fields, including materials science, geology, biology, and electronics.
Intervalence charge transfer (IVCT) refers to a molecular electronic transition in which an electron is transferred between two metal centers that have different oxidation states within a complex, typically in mixed-valence compounds. This type of charge transfer occurs in systems where there are two or more closely spaced metal ions, and at least one is in a different oxidation state from the others.
A Jablonski diagram is a graphical representation of the electronic states of a molecule and the transitions between these states, typically used in the field of photophysics and photochemistry. It depicts the energy levels of the singlet and triplet states of a molecule, along with the various types of electronic transitions and the associated processes.
A list of spectroscopists typically includes notable scientists and researchers who have made significant contributions to the field of spectroscopy. Spectroscopy is the study of the interaction between matter and electromagnetic radiation, and it has applications in various fields such as chemistry, physics, astronomy, and materials science.
Multi-parametric surface plasmon resonance (MP-SPR) is an advanced technique used to study biomolecular interactions and physical properties at interfaces with high sensitivity and specificity. It is an extension of traditional surface plasmon resonance (SPR) technology, which measures changes in refractive index near metal surfaces caused by biomolecular binding events.
Shape resonance is a phenomenon that occurs in quantum mechanics, particularly in the study of scattering processes. It refers to a temporary trapping of wave function density in a potential well created by the shape of a potential barrier. When particles (such as electrons or nuclei) interact with this potential, certain conditions can lead to an increased likelihood of scattering at specific energies. In a more detailed context, shape resonance happens when the incoming quantum particle has an energy that allows it to temporarily occupy a quasi-bound state.
Multiangle light scattering (MALS) is a technique used to characterize the size, shape, and molecular weight of macromolecules in solution, such as proteins, polymers, and nanoparticles. This method is based on the scattering of light at multiple angles as it interacts with particles suspended in a liquid.
Multivariate optical computing (MOC) is an advanced computing paradigm that uses optical systems to perform computations, leveraging the unique properties of light. It involves the simultaneous processing of multiple variables or data dimensions, making it particularly well-suited for tasks that require handling complex, multidimensional data sets. ### Key Features of Multivariate Optical Computing: 1. **Optical Processing**: MOC uses light (usually lasers) to manipulate data.
An optode is a device used to measure chemical parameters, primarily dissolved oxygen and other analytes in various environments, including water bodies and biological systems. It combines optical technologies with a sensing element that responds to specific chemical reactions. Optodes typically consist of: 1. **Sensing Layer:** This layer contains fluorescent dyes that change their properties in response to the presence of specific analytes.
Oscillator strength is a dimensionless quantity used in spectroscopy to quantify the probability of absorption or emission of electromagnetic radiation by an atom or molecule during a transition between energy levels. It is particularly important in the study of electronic transitions in atoms and molecules.
Global change refers to significant and lasting alterations in the Earth's systems, which can occur on a global scale. These changes can be driven by natural processes or human activities and can affect the environment, climate, ecosystems, and human societies. Key components of global change include: 1. **Climate Change**: Primarily caused by the increase of greenhouse gases in the atmosphere due to human activities such as burning fossil fuels, deforestation, and industrial processes.
Photoionization is a process in which an atom or molecule absorbs a photon of light and subsequently ejects one or more of its electrons, resulting in the formation of an ion. This phenomenon is crucial in various fields such as astrophysics, chemistry, and plasma physics. The process can be described as follows: 1. **Photon Absorption**: An atom or molecule absorbs a photon whose energy is greater than or equal to the ionization energy of the atom or molecule.
Representative Layer Theory (RLT) is a conceptual framework used primarily in the fields of social sciences and psychology to understand how individuals and groups represent various aspects of their experiences, identities, and social structures. The theory seeks to explain how layers of representation influence perception, behavior, and communication within different contexts. Key components of Representative Layer Theory include: 1. **Layers of Representation**: The theory posits that individuals operate within multiple layers or dimensions of representation.
Photopyroelectric refers to a phenomenon related to the interaction between light (photons) and temperature changes (pyroelectric effect) in certain materials. In essence, it combines photonic and thermal effects to generate an electrical signal. Here’s a breakdown of the concept: 1. **Pyroelectric Effect**: This is the ability of certain materials to generate an electric charge in response to a change in temperature.
Reflectometric Interference Spectroscopy (RIfS) is an optical technique used for measuring thin films and surfaces, particularly in the fields of materials science, photonics, and biology. The method is based on the interference of light waves reflected from different layers of a sample, which can include thin films, coatings, or biological materials.
The Renner-Teller effect is a phenomenon in molecular physics and spectroscopy that occurs in polyatomic molecules with degenerate electronic states. It is a blending of the Renner effect and the Teller effect, which describe how molecular vibrations and electronic states interact, leading to splitting of energy levels. Specifically, the Renner-Teller effect is most notable in systems where the degeneracy of electronic states is lifted due to coupling between electronic and vibrational states.
Rotational spectroscopy is a technique used to study the rotational motions of molecules by measuring the electromagnetic radiation they emit or absorb, particularly in the microwave region of the spectrum. This method provides detailed information about the molecular structure, including bond lengths and angles, as well as the moments of inertia of the molecules. The fundamental principle behind rotational spectroscopy is based on the fact that molecules can rotate about their axes and that these rotational transitions correspond to specific energy levels.
Rutherford Backscattering Spectrometry (RBS) is a powerful analytical technique used to determine the composition and thickness of thin films and layers of materials. It is based on the principles of nuclear physics and involves bombarding a sample with high-energy ions, typically helium ions (alpha particles), which are directed at the material under investigation.
The Second Solar Spectrum refers to a specific aspect of solar radiation that focuses on the polarization and spectral features of light emitted by the Sun. Unlike the more commonly discussed solar spectrum, which pertains to the intensity of light across different wavelengths, the Second Solar Spectrum emphasizes the presence of subtle polarization signals that can contain important information about the solar atmosphere, particularly the layers of the solar atmosphere above the photosphere, such as the chromosphere and the corona.

Pinned article: Introduction to the OurBigBook Project

Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 2.
    You can publish local OurBigBook lightweight markup files to either https://OurBigBook.com or as a static website
    .
    Figure 3.
    Visual Studio Code extension installation
    .
    Figure 4.
    Visual Studio Code extension tree navigation
    .
    Figure 5.
    Web editor
    . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
    Video 4.
    OurBigBook Visual Studio Code extension editing and navigation demo
    . Source.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact