Superconducting quantum computing

ID: superconducting-quantum-computing

Superconducting quantum computing is a type of quantum computing that uses superconducting materials to create qubits, the fundamental units of quantum information. Superconductors are materials that exhibit zero electrical resistance when cooled below a certain temperature, allowing them to carry electrical current without energy loss. In superconducting quantum computers, qubits are typically formed using Josephson junctions, which are thin insulating barriers sandwiched between two superconducting materials.
Superconducting quantum computing by Ciro Santilli 37 Updated +Created
Based on the Josephson effect. Yet another application of that phenomenal phenomena!
It is fun to see that the representation of information in the QC basically uses an LC circuit, which is a very classical resonator circuit.
As mentioned at en.wikipedia.org/wiki/Superconducting_quantum_computing#Qubit_archetypes there are actually a few different types of superconducting qubits:
and hybridizations of those such as:
Input:
Video 2.
Quantum Transport, Lecture 16: Superconducting qubits by Sergey Frolov (2013)
Source. youtu.be/Kz6mhh1A_mU?t=1171 describes several possible realizations: charge, flux, charge/flux and phase.
Video 3.
Building a quantum computer with superconducting qubits by Daniel Sank (2019)
Source. Daniel wears a "Google SB" t-shirt, which either means shabi in Chinese, or Santa Barbara. Google Quantum AI is based in Santa Barbara, with links to UCSB.
Video 5.
Superconducting Qubits I Part 1 by Zlatko Minev (2020)
Source.
The Q&A in the middle of talking is a bit annoying.
Video 6.
Superconducting Qubits I Part 2 by Zlatko Minev (2020)
Source.
Video 7.
How to Turn Superconductors Into A Quantum Computer by Lukas's Lab (2023)
Source. This video is just the introduction, too basic. But if he goes through with the followups he promisses, then something might actually come out of it.

New to topics? Read the docs here!