Superconducting quantum computing by Ciro Santilli 34 Updated Created
Based on the Josephson effect. Yet another application of that phenomenal phenomena!
It is fun to see that the representation of information in the QC basically uses an LC circuit, which is a very classical resonator circuit.
As mentioned at en.wikipedia.org/wiki/Superconducting_quantum_computing#Qubit_archetypes there are actually a few different types of superconducting qubits:
  • flux
  • charge
  • phase
and hybridizations of those such as:
Input:
  • microwave radiation to excite circuit, or do nothing and wait for it to fall to 0 spontaneously
  • interaction: TODO
  • readout: TODO
Video 2.
Quantum Transport, Lecture 16: Superconducting qubits by Sergey Frolov (2013)
Source. youtu.be/Kz6mhh1A_mU?t=1171 describes several possible realizations: charge, flux, charge/flux and phase.
Video 3.
Building a quantum computer with superconducting qubits by Daniel Sank (2019)
Source. Daniel wears a "Google SB" t-shirt, which either means shabi in Chinese, or Santa Barbara. Google Quantum AI is based in Santa Barbara, with links to UCSB.
Video 5.
Superconducting Qubits I Part 1 by Zlatko Minev (2020)
Source.
The Q&A in the middle of talking is a bit annoying.
Video 6.
Superconducting Qubits I Part 2 by Zlatko Minev (2020)
Source.
Video 7.
How to Turn Superconductors Into A Quantum Computer by Lukas's Lab (2023)
Source. This video is just the introduction, too basic. But if he goes through with the followups he promisses, then something might actually come out of it.