Calculus Updated 2025-07-16
Well summarized as "the branch of mathematics that deals with limits".
Cambridgeshire Updated 2025-07-16
Video 1.
Being a Dickhead's Cool by Reuben Dangoor (2010)
Source.
Invariant vs covariant Updated 2025-07-16
Some sources distinguish "invariant" from "covariant" such that under some transformation (typically Lie group):
  • invariant: the value of does not change if we transform
  • covariant: the form of the equation does not change if we transform .
TODO examples.
Inverse AC Josephson effect Updated 2025-07-16
If you shine microwave radiation on a Josephson junction, it produces a fixed average voltage that depends only on the frequency of the microwave. TODO how is that done more precisely? How to you produce and inject microwaves into the thing?
It acts therefore as a perfect frequency to voltage converter.
The Wiki page gives the formula: en.wikipedia.org/wiki/Josephson_effect#The_inverse_AC_Josephson_effect You get several sinusoidal harmonics, so the output is not a perfect sine. But the infinite sum of the harmonics has a fixed average voltage value.
And en.wikipedia.org/wiki/Josephson_voltage_standard#Josephson_effect mentions that the effect is independent of the junction material, physical dimension or temperature.
All of the above, compounded with the fact that we are able to generate microwaves with extremely precise frequency with an atomic clock, makes this phenomenon perfect as a Volt standard, the Josephson voltage standard.
TODO understand how/why it works better.
In vitro Updated 2025-07-16
This does not seem to go deep into the Standard Model as Physics from Symmetry by Jakob Schwichtenberg (2015), appears to focus more on more basic applications.
But because it is more basic, it does explain some things quite well.
In the LC circuit:
You can kickstart motion in either of those systems in two ways:
Inward Bound by Abraham Pais (1988) Updated 2025-07-16
The book unfortunately does not cover the history of quantum mechanics very, the author specifically says that this will not be covered, the focus is more on particles/forces. But there are still some mentions.
Advantages of fog: there is only one, reusing hardware that would be otherwise idle.
Disadvantages:
  • in cloud, you can put your datacenter on the location with the cheapest possible power. On fog you can't.
  • on fog there is some waste due to network communication.
  • you will likely optimize code less well because you might be targeting a wide array of different types of hardware, so more power (and time) wastage. Furthermore, some of the hardware used will not not be optimal for the task, e.g. CPU instead of GPU.
All of this makes Ciro Santilli doubtful if it wouldn't be more efficient for volunteers simply to donate money rather than inefficient power usage.
Bibliography:

Unlisted articles are being shown, click here to show only listed articles.