Bell circuit Updated +Created
A quantum circuit which when fed with input produces the Bell state.
Figure 1.
Quantum circuit that generates the Bell state
. Source.
The fundamental intuition for this circuit is as follows.
First the Hadamard gate makes the first qubit be in a 50/50 state.
Then, the CNOT gate gets controlled by that 50/50 value, and the controlled qubit also gets 50/50 chance as a result.
However, both qubits are now entangled: the result of the second qubit depends on the result of the first one. Because:
  • if the first qubit is 0, cnot is not active, and so the second qubit remains 0 as its input
  • if the first qubit is 1, cnot is active, and so the second qubit is flipped to 1
Loopholes in Bell test experiments Updated +Created
FreeBSD Updated +Created
History of Bitcoin Updated +Created
2D Ising model Updated +Created
Alternating group Updated +Created
Note that odd permutations don't form a subgroup of the symmetric group like the even permutations do, because the composition of two odd permutations is an even permutation.
Mark Zuckerberg Updated +Created
E. Coli K-12 MG1655 gene thrA Updated +Created
The second gene in the E. Coli K-12 MG1655 genome. Part of the E. Coli K-12 MG1655 operon thrLABC.
Part of a reaction that produces threonine.
This protein is an enzyme. The UniProt entry clearly shows the chemical reactions that it catalyses. In this case, there are actually two! It can either transforming the metabolite:
  • "L-homoserine" into "L-aspartate 4-semialdehyde"
  • "L-aspartate" into "4-phospho-L-aspartate"
Also interestingly, we see that both of those reaction require some extra energy to catalyse, one needing adenosine triphosphate and the other nADP+.
TODO: any mention of how much faster it makes the reaction, numerically?
Since this is an enzyme, it would also be interesting to have a quick search for it in the KEGG entry starting from the organism: www.genome.jp/pathway/eco01100+M00022 We type in the search bar "thrA", it gives a long list, but the last entry is our "thrA". Selecting it highlights two pathways in the large graph, so we understand that it catalyzes two different reactions, as suggested by the protein name itself (fused blah blah). We can now hover over:
  • the edge: it shows all the enzymes that catalyze the given reaction. Both edges actually have multiple enzymes, e.g. the L-Homoserine path is also catalyzed by another enzyme called metL.
  • the node: they are the metabolites, e.g. one of the paths contains "L-homoserine" on one node and "L-aspartate 4-semialdehyde"
Note that common cofactor are omitted, since we've learnt from the UniProt entry that this reaction uses ATP.
If we can now click on the L-Homoserine edge, it takes us to: www.genome.jp/entry/eco:b0002+eco:b3940. Under "Pathway" we see an interesting looking pathway "Glycine, serine and threonine metabolism": www.genome.jp/pathway/eco00260+b0002 which contains a small manually selected and extremely clearly named subset of the larger graph!
But looking at the bottom of this subgraph (the UI is not great, can't Ctrl+F and enzyme names not shown, but the selected enzyme is slightly highlighted in red because it is in the URL www.genome.jp/pathway/eco00260+b0002 vs www.genome.jp/pathway/eco00260) we clearly see that thrA, thrB and thrC for a sequence that directly transforms "L-aspartate 4-semialdehyde" into "Homoserine" to "O-Phospho-L-homoserine" and finally tothreonine. This makes it crystal clear that they are not just located adjacently in the genome by chance: they are actually functionally related, and likely controlled by the same transcription factor: when you want one of them, you basically always want the three, because you must be are lacking threonine. TODO find transcription factor!
The UniProt entry also shows an interactive browser of the tertiary structure of the protein. We note that there are currently two sources available: X-ray crystallography and AlphaFold. To be honest, the AlphaFold one looks quite off!!!
By inspecting the FASTA for the entire genome, or by using the NCBI open reading frame tool, we see that this gene lies entirely in its own open reading frame, so it is quite boring
From the FASTA we see that the very first three Codons at position 337 are
ATG CGA GTG
where ATG is the start codon, and CGA GTG should be the first two that actually go into the protein:
ecocyc.org/gene?orgid=ECOLI&id=ASPKINIHOMOSERDEHYDROGI-MONOMER mentions that the enzime is most active as protein complex with four copies of the same protein:
Aspartate kinase I / homoserine dehydrogenase I comprises a dimer of ThrA dimers. Although the dimeric form is catalytically active, the binding equilibrium dramatically favors the tetrameric form. The aspartate kinase and homoserine dehydrogenase activities of each ThrA monomer are catalyzed by independent domains connected by a linker region.
TODO image?
Interface Message Processor Updated +Created
Principles of AGI Updated +Created
AGI research Updated +Created
ASM International Updated +Created
Parent/predecessor of ASML.
Degree (algebra) Updated +Created
The degree of some algebraic structure is some parameter that describes the structure. There is no universal definition valid for all structures, it is a per structure type thing.
This is particularly useful when talking about structures with an infinite number of elements, but it is sometimes also used for finite structures.
Examples:
  • the dihedral group of degree n acts on n elements, and has order 2n
  • the parameter that characterizes the size of the general linear group is called the degree of that group, i.e. the dimension of the underlying matrices
99 Bottles of Beer Updated +Created
Adobe Updated +Created
Paulo Freire Updated +Created
en.wikipedia.org/wiki/Paulo_Freire:
During his childhood and adolescence, Freire ended up four grades behind, and his social life revolved around playing pick-up football with other poor children, from whom he claims to have learned a great deal. These experiences would shape his concerns for the poor and would help to construct his particular educational viewpoint. Freire stated that poverty and hunger severely affected his ability to learn. These experiences influenced his decision to dedicate his life to improving the lives of the poor: "I didn't understand anything because of my hunger. I wasn't dumb. It wasn't lack of interest. My social condition didn't allow me to have an education. Experience showed me once again the relationship between social class and knowledge"
OMG so nice.
AGI test Updated +Created
Bitcoin HOWTO Updated +Created

Unlisted articles are being shown, click here to show only listed articles.