Quantum Processes and Computation course of the University of Oxford Updated 2025-07-16
2022 page: www.cs.ox.ac.uk/teaching/courses/2022-2023/quantum/ (archive). Assignments are available:
- www.cs.ox.ac.uk/people/aleks.kissinger/courses/qpc2022/assignment1.pdf
- www.cs.ox.ac.uk/people/aleks.kissinger/courses/qpc2022/assignment2.pdf
- www.cs.ox.ac.uk/people/aleks.kissinger/courses/qpc2022/assignment3.pdf
- www.cs.ox.ac.uk/people/aleks.kissinger/courses/qpc2022/assignment4.pdf
- www.cs.ox.ac.uk/people/aleks.kissinger/courses/qpc2022/assignment5.pdf
- www.cs.ox.ac.uk/people/aleks.kissinger/courses/qpc2022/assignment6.pdf
2022 lecturer: Aleks Kissinger
The course would be better named ZX-calculus as it appears to be the only subject covered.
Symmetric group Updated 2025-07-16
Group of all permutations.
1932 Nobel Prize in Physics Updated 2025-07-16
To Ernest Lawrence for the cyclotron.
Integrated circuit Updated 2025-08-08
It is quite amazing to read through books such as The Supermen: The Story of Seymour Cray by Charles J. Murray (1997), as it makes you notice that earlier CPUs (all before the 70's) were not made with integrated circuits, but rather smaller pieces glued up on PCBs! E.g. the arithmetic logic unit was actually a discrete component at one point.
The reason for this can also be understood quite clearly by reading books such as Robert Noyce: The Man Behind the Microchip by Leslie Berlin (2006). The first integrated circuits were just too small for this. It was initially unimaginable that a CPU would fit in a single chip! Even just having a very small number of components on a chip was already revolutionary and enough to kick-start the industry. Just imagine how much money any level of integration saved in those early days for production, e.g. as opposed to manually soldering point-to-point constructions. Also the reliability, size an weight gains were amazing. In particular for military and spacial applications originally.
A briefing on semiconductors by Fairchild Semiconductor (1967)
Source. Uploaded by the Computer History Museum. There is value in tutorials written by early pioneers of the field, this is pure gold.
Shows:
- photomasks
- silicon ingots and wafer processing
Potentiometer Updated 2025-08-08
2D Ising model Updated 2025-07-16
Advanced quantum mechanics by Freeman Dyson (1951) Updated 2025-07-16
Lecture notes that were apparently very popular at Cornell University. In this period he was actively synthesizing the revolutionary bullshit Richard Feynman and Julian Schwinger were writing and making it understandable to the more general physicist audience, so it might be a good reading.
We shall not develop straightaway a correct theory including many particles. Instead we follow the historical development. We try to make a relativistic quantum theory of one particle, find out how far we can go and where we get into trouble.
AGI bibliography Updated 2025-07-16
Alternating group Updated 2025-07-16
Note that odd permutations don't form a subgroup of the symmetric group like the even permutations do, because the composition of two odd permutations is an even permutation.
Bitcoin protocol Updated 2025-07-16
E. Coli K-12 MG1655 gene thrA Updated 2025-07-16
NCBI entry: www.ncbi.nlm.nih.gov/gene/945803.
This protein is an enzyme. The UniProt entry clearly shows the chemical reactions that it catalyses. In this case, there are actually two! It can either transforming the metabolite:Also interestingly, we see that both of those reaction require some extra energy to catalyse, one needing adenosine triphosphate and the other nADP+.
TODO: any mention of how much faster it makes the reaction, numerically?
Since this is an enzyme, it would also be interesting to have a quick search for it in the KEGG entry starting from the organism: www.genome.jp/pathway/eco01100+M00022 We type in the search bar "thrA", it gives a long list, but the last entry is our "thrA". Selecting it highlights two pathways in the large graph, so we understand that it catalyzes two different reactions, as suggested by the protein name itself (fused blah blah). We can now hover over:Note that common cofactor are omitted, since we've learnt from the UniProt entry that this reaction uses ATP.
- the edge: it shows all the enzymes that catalyze the given reaction. Both edges actually have multiple enzymes, e.g. the L-Homoserine path is also catalyzed by another enzyme called metL.
- the node: they are the metabolites, e.g. one of the paths contains "L-homoserine" on one node and "L-aspartate 4-semialdehyde"
If we can now click on the L-Homoserine edge, it takes us to: www.genome.jp/entry/eco:b0002+eco:b3940. Under "Pathway" we see an interesting looking pathway "Glycine, serine and threonine metabolism": www.genome.jp/pathway/eco00260+b0002 which contains a small manually selected and extremely clearly named subset of the larger graph!
But looking at the bottom of this subgraph (the UI is not great, can't Ctrl+F and enzyme names not shown, but the selected enzyme is slightly highlighted in red because it is in the URL www.genome.jp/pathway/eco00260+b0002 vs www.genome.jp/pathway/eco00260) we clearly see that thrA, thrB and thrC for a sequence that directly transforms "L-aspartate 4-semialdehyde" into "Homoserine" to "O-Phospho-L-homoserine" and finally tothreonine. This makes it crystal clear that they are not just located adjacently in the genome by chance: they are actually functionally related, and likely controlled by the same transcription factor: when you want one of them, you basically always want the three, because you must be are lacking threonine. TODO find transcription factor!
The UniProt entry also shows an interactive browser of the tertiary structure of the protein. We note that there are currently two sources available: X-ray crystallography and AlphaFold. To be honest, the AlphaFold one looks quite off!!!
By inspecting the FASTA for the entire genome, or by using the NCBI open reading frame tool, we see that this gene lies entirely in its own open reading frame, so it is quite boring
From the FASTA we see that the very first three Codons at position 337 arewhere
ATG CGA GTG
ATG
is the start codon, and CGA GTG should be the first two that actually go into the protein:ecocyc.org/gene?orgid=ECOLI&id=ASPKINIHOMOSERDEHYDROGI-MONOMER mentions that the enzime is most active as protein complex with four copies of the same protein:TODO image?
Aspartate kinase I / homoserine dehydrogenase I comprises a dimer of ThrA dimers. Although the dimeric form is catalytically active, the binding equilibrium dramatically favors the tetrameric form. The aspartate kinase and homoserine dehydrogenase activities of each ThrA monomer are catalyzed by independent domains connected by a linker region.
FreeBSD Updated 2025-07-16
Loopholes in Bell test experiments Updated 2025-07-16
Mark Zuckerberg Updated 2025-07-16
Principles of AGI Updated 2025-07-16
Random number generation Updated 2025-07-16
99 Bottles of Beer Updated 2025-07-16
Aegisub Updated 2025-07-16
First import video with:They don't have an
aegisub-3.2 ourbigbook-parent.mkv
aegisub
executable without the version number. Amazing.If you already have a subtitle file that you want to edit, then just pass it on as well:
aegisub-3.2 ourbigbook-parent.mkv ourbigbook-parent.ass
Enter: finish editing the current entry and start a new one.
Aerobic and anaerobic organisms Updated 2025-07-16
Aerobic organism Updated 2025-07-16
There are unlisted articles, also show them or only show them.