Proton VPN Updated 2025-07-16
Conda Updated 2025-07-16
Conda is like pip, except that it also manages shared library dependencies, including providing prebuilts.
This has made Conda very popular in the deep learning community around 2020, where using Python frontends like PyTorch to configure faster precompiled backends was extremely common.
It also means that it is a full package manager and extremely overbloated and blows up all the time. People should just use Docker instead for that kind of stuff: www.reddit.com/r/learnmachinelearning/comments/kd88p8/comment/keco07k/
Python ast Updated 2025-07-16
CIA usage of Domains by Proxy Updated 2025-07-16
The CIA really likes this registrar, e.g.:
Silk Road (film) Updated 2025-09-09
We need a mini-series, this just doesn't have enough time. Notably, too much focus on dob, and not enough on the development of Silk Road iteslf. Though it is cool to see what his motivations might have been like. One wonders how realistic the character is. Though him meeting Ross Ulbricht personally sounds exceptionally unlikely.
nvidia-smi Updated 2025-07-16
Starting at twitter.com/shakirov2036/status/1746729471778988499, Russian expat Oleg Shakirov comments "Let me know if you are still looking for the Carson website".
He then proceeded to give Carson and 5 other domains in private communication. His name is given here with his consent. His advances besides not being blind were Yandexing for some of the known hits which led to pages that contained other hits:
Unfortunately, these methods are not very generalizable, and didn't lead to a large number of other hits. But every domain counts!
OpenNMT Updated 2025-07-16
qiskit/qft.py Updated 2025-07-16
This is an example of the qiskit.circuit.library.QFT implementation of the Quantum Fourier transform function which is documented at: docs.quantum.ibm.com/api/qiskit/0.44/qiskit.circuit.library.QFT
Output:
init: [1, 0, 0, 0, 0, 0, 0, 0]
qc
     ┌──────────────────────────────┐┌──────┐
q_0: ┤0                             ├┤0     ├
     │                              ││      │
q_1: ┤1 Initialize(1,0,0,0,0,0,0,0) ├┤1 QFT ├
     │                              ││      │
q_2: ┤2                             ├┤2     ├
     └──────────────────────────────┘└──────┘
transpiled qc
     ┌──────────────────────────────┐                                     ┌───┐   
q_0: ┤0                             ├────────────────────■────────■───────┤ H ├─X─
     │                              │              ┌───┐ │        │P(π/2) └───┘ │ 
q_1: ┤1 Initialize(1,0,0,0,0,0,0,0) ├──────■───────┤ H ├─┼────────■─────────────┼─
     │                              │┌───┐ │P(π/2) └───┘ │P(π/4)                │ 
q_2: ┤2                             ├┤ H ├─■─────────────■──────────────────────X─
     └──────────────────────────────┘└───┘
Statevector([0.35355339+0.j, 0.35355339+0.j, 0.35355339+0.j,
             0.35355339+0.j, 0.35355339+0.j, 0.35355339+0.j,
             0.35355339+0.j, 0.35355339+0.j],
            dims=(2, 2, 2))

init: [0.0, 0.35355339059327373, 0.5, 0.3535533905932738, 6.123233995736766e-17, -0.35355339059327373, -0.5, -0.35355339059327384]
Statevector([ 7.71600526e-17+5.22650714e-17j,
              1.86749130e-16+7.07106781e-01j,
             -6.10667421e-18+6.10667421e-18j,
              1.13711443e-16-1.11022302e-16j,
              2.16489014e-17-8.96726857e-18j,
             -5.68557215e-17-1.11022302e-16j,
             -6.10667421e-18-4.94044770e-17j,
             -3.30200457e-16-7.07106781e-01j],
            dims=(2, 2, 2))
So this also serves as a more interesting example of quantum compilation, mapping the QFT gate to Qiskit Aer primitives.
If we don't transpile in this example, then running blows up with:
qiskit_aer.aererror.AerError: 'unknown instruction: QFT'
The second input is:
and the output of that approximately:
[0, 1j/sqrt(2), 0, 0, 0, 0, 0, 1j/sqrt(2)]
which can be defined simply as the normalized DFT of the input quantum state vector.

Unlisted articles are being shown, click here to show only listed articles.