Turing machine that halts if and only if Collatz conjecture is false by Ciro Santilli 35 Updated +Created
Intuitively we see that the situation is fundamentally different from the Turing machine that halts if and only if the Goldbach conjecture is false because for Collatz the counter example must go off into infinity, while in Goldbach conjecture we can finitely check any failures.
Amazing.
Condensed matter physics course of the University of Oxford by Ciro Santilli 35 Updated +Created
This could refer to several more specific courses, see the tagged articles for a list.
Skelet machine #1 is infinite by Ciro Santilli 35 Updated +Created
Non formal proof with a program March 2023: www.sligocki.com/2023/03/13/skelet-1-infinite.html Awesome article that describes the proof procedure.
The proof uses Turing machine acceleration to show that Skelet machine #1 is a Translated cycler Turing machine with humongous cycle paramters:
  • start between 50-200 M steps, not calculated precisely on the original post
  • period: ~8 billion steps
Geographical division of England by Ciro Santilli 35 Updated +Created
Countries of the United Kingdom by Ciro Santilli 35 Updated +Created
Regions of England by Ciro Santilli 35 Updated +Created
South East England by Ciro Santilli 35 Updated +Created
County in South East England by Ciro Santilli 35 Updated +Created
Pendon Museum by Ciro Santilli 35 Updated +Created
Video 1.
Model Village at Pendon Museum by the BBC (1975)
Source.
Video 2.
The History of Pendon Museum by World of Railways (2012)
Source. The founder was Australian. His family was wealthy, and he liked cycled around the Vale.
Degree of a polynomial by Ciro Santilli 35 Updated +Created
Hilbert's tenth problem by Ciro Santilli 35 Updated +Created
Once you hear about the uncomputability of such problems, it makes you see that all Diophantine equation questions risk being undecidable, though in some simpler cases we manage to come up with answers. The feeling is similar to watching people trying to solve the Halting problem, e.g. in the effort to determine BB(5).
Algebraic number field by Ciro Santilli 35 Updated +Created
The set of all algebraic numbers forms a field.
This field contains all of the rational numbers, but it is a quadratically closed field.
Like the rationals, this field also has the same cardinality as the natural numbers, because we can specify and enumerate each of its members by a fixed number of integers from the polynomial equation that defines them. So it is a bit like the rationals, but we use potentially arbitrary numbers of integers to specify each number (polynomial coefficients + index of which root we are talking about) instead of just always two as for the rationals.
Each algebraic number also has a degree associated to it, i.e. the degree of the polynomial used to define it.
Algebraic function by Ciro Santilli 35 Updated +Created
TODO understand.
Group axiom by Ciro Santilli 35 Updated +Created
Natural number by Ciro Santilli 35 Updated +Created

There are unlisted articles, also show them or only show them.