It gets the job done, but cannot make a large codebase DRY without insanity.
As of 2020, C is like Latin, and we are in the Middle Ages, where it has become a lingua franca.
It is interesting to note how late C appeared: 1972, compared e.g. to Fortran which is from 1957. This is basically because C was a "systems programming language", i.e. with focus on pointer manipulation, and because early computers were so weak, there was no operating system or many software layers in the early days. Fortran however was a numerical language, and it ran directly on bare metal, an application that existed before systems programming.
Examples under c.
Haskell by Ciro Santilli 37 Updated 2025-07-16
There are only two pre-requisites to using Haskell in 2020. You have to be an idealist. And you have to be a genius:
Figure 1.
xkcd 1312: Haskell
. Source.
Little Boy by Ciro Santilli 37 Updated 2025-07-16
Uranium-based, dropped on Hiroshima. The uranium was enriched at the Clinton Engineer Works.
RISC-V by Ciro Santilli 37 Updated 2025-07-16
The leading no-royalties options as of 2020.
China has been a major RISC-V potential user in the late 2010s, since the country is trying to increase its semiconductor industry independence, especially given economic sanctions imposed by the USA.
E.g. a result of this, the RISC-V Foundation moved its legal headquarters to Switzerland in 2019 to try and overcome some of the sanctions.
OpenStreetMap by Ciro Santilli 37 Updated 2025-07-16
It is rare to find a project with such a ridiculously high importance over funding ratio.
E.g., as of 2020, their help login help.openstreetmap.org/ shows MyOpenID as an option, which was discontinued in 2014, and not Google OAuth.
They do still seem to have a bit more activity than gis.stackexchange.com/questions/tagged/openstreetmap on Stack Exchange.
Complaints:
All of this is a shame, because they do have some incredible data that you cannot find easily on other maps because people just edited it up.
Escherichia coli by Ciro Santilli 37 Updated 2025-07-16
Size: 1-2 micrometers long and about 0.25 micrometer in diameter, so: 2 * 0.5 * 0.5 * 10e-18 and thus 0.5 micrometer square.
Genome:
  • 4k genes
  • 5 Mbps
  • www.ncbi.nlm.nih.gov/genome/167
  • wget ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/005/845/GCF_000005845.2_ASM584v2/GCF_000005845.2_ASM584v2_genomic.fna.gz
  • wget -O NC_000913.3.fasta 'https://www.ncbi.nlm.nih.gov/search/api/sequence/NC_000913.3/?report=fasta'
Omics modeling: www.ncbi.nlm.nih.gov/pmc/articles/PMC5611438/ Tools for Genomic and Transcriptomic Analysis of Microbes at Single-Cell Level Zixi Chen, Lei Chen, Weiwen Zhang.
Kibble balance by Ciro Santilli 37 Updated 2025-07-16
The Kibble balance is so precise and reproducible that it was responsible for the 2019 redefinition of the Kilogram.
It relies rely on not one, but three macroscopic quantum mechanical effects:
How cool is that! As usual, the advantage of those effects is that they are discrete, and have very fixed values that don't depend either:
One downside of using some quantum mechanical effects is that you have to cool everything down to 5K. But that's OK, we've got liquid helium!
The operating principle is something along:
Then, based on all this, you can determine how much the object weights.
Video 1.
How We're Redefining the kg by Veritasium
. Source.
Video 2.
The Kibble Balance, realizing the Kilogram from fundamental constants of nature by Richard Green
. Source. Presented in 2022 for a CENAM seminar, the Mexican metrology institute. The speaker is from the Canadian metrology institute
Video 3.
The Watt balance and redefining the kilogram by National Physical Laboratory
. Source. Nothing much, but fun to hear Kibble talking about his balance in beautiful English before he passed.
AC Josephson effect by Ciro Santilli 37 Updated 2025-07-16
This is what happens when you apply a DC voltage across a Josephson junction.
It is called "AC effect" because when we apply a DC voltage, it produces an alternating current on the device.
By looking at the Josephson equations, we see that a positive constant, then just increases linearly without bound.
Therefore, from the first equation:
we see that the current will just vary sinusoidally between .
This meas that we can use a Josephson junction as a perfect voltage to frequency converter.
Wikipedia mentions that this frequency is , so it is very very high, so we are not able to view individual points of the sine curve separately with our instruments.
Also it is likely not going to be very useful for many practical applications in this mode.
Figure 1.
I-V curve of the AC Josephson effect
. Source.
Voltage is horizontal, current vertical. The vertical bar in the middle is the effect of interest: the current is going up and down very quickly between , the Josephson current of the device. Because it is too quick for the oscilloscope, we just see a solid vertical bar.
The non vertical curves at right and left are just other effects we are not interested in.
TODO what does it mean that there is no line at all near the central vertical line? What happens at those voltages?
Video 1.
Superconducting Transition of Josephson junction by Christina Wicker (2016)
Source. Amazing video that presumably shows the screen of a digital oscilloscope doing a voltage sweep as temperature is reduced and superconductivity is reached.
Figure 2.
I-V curve of a superconducting tunnel junction
. So it appears that there is a zero current between and . Why doesn't it show up on the oscilloscope sweeps, e.g. Video 1. "Superconducting Transition of Josephson junction by Christina Wicker (2016)"?
Quote by Jesus by Ciro Santilli 37 Updated 2025-07-16
Matthew 10:16-23 Coming Persecutions, where Jesus before being persecuted warns his disciples that there is evil in the world and that they must be aware of it, all while being pure at heart:
Behold, I send you out as sheep in the midst of wolves; so be wise as serpents and innocent as doves.

There are unlisted articles, also show them or only show them.