accounts for them all, which we know how to do due to the classification of finite fields.
So we see that the classification is quite simple, much like the classification of finite fields, and in strict opposition to the classification of finite simple groups (not to mention the 2023 lack of classification for non simple finite groups!)
Ubuntu 23.04 install:
sudo apt install rbase
Hello world:
R -e 'print("hello world")'
Install a package, e.g. Bookdown:
sudo R -e 'install.packages("bookdown")'
These appear to be benchmarks that don't involve running anything concretely, just compiling and likely then counting gates:
These are a bit like the Verilog of quantum computing.
One would hope that they are not Turing complete, this way they may serve as a way to pass on data in such a way that the receiver knows they will only be doing so much computation in advance to unpack the circuit. So it would be like JSON is for JavaScript.
OpenQASM by Ciro Santilli 37 Updated 2025-07-16
On Qiskit qiskit==0.44.1:
qc.qasm()
E.g. with our qiskit/hello.py, we obtain the Bell state circuit:
OPENQASM 2.0;
include "qelib1.inc";
qreg q[2];
creg c[2];
h q[0];
cx q[0],q[1];
measure q[0] -> c[0];
measure q[1] -> c[1];

There are unlisted articles, also show them or only show them.