Given enough computational power per dollar, AGI is inevitable, but it is not sure certain ever happen given the end of end of Moore's Law.
Alternatively, it could also be achieved genetically modified biological brains + brain in a vat.
Imagine a brain the size of a building, perfectly engineered to solve certain engineering problems, and giving hints to human operators + taking feedback from cameras and audio attached to the operators.
This likely implies transhumanism, and mind uploading.
Ciro Santilli joined the silicon industry at one point to help increase our computational capacity and reach AGI.
Ciro believes that the easiest route to full AI, if any, could involve Ciro's 2D reinforcement learning games.
This point is beautifully argued in lots of different sources, and is clearly a pillar of AGI.
Perhaps one may argue that our deep learning layers do form some kind of hierarchy, e.g. this is very clear in certain models such as convolutional neural network. But many of those models cannot have arbitrarily deep hierarchies, which appears to be a fundamental aspect of intelligence.
How to Create a Mind:
The lists of steps in my mind are organized in hierarchies. I follow a routine procedure before going to sleep. The first step is to brush my teeth. But this action is in turn broken into a smaller series of steps, the first of which is to put toothpaste on the toothbrush. That step in turn is made up of yet smaller steps, such as finding the toothpaste, removing the cap, and so on. The step of finding the toothpaste also has steps, the first of which is to open the bathroom cabinet. That step in turn requires steps, the first of which is to grab the outside of the cabinet door. This nesting actually continues down to a very fine grain of movements, so that there are literally thousands of little actions constituting my nighttime routine. Although I may have difficulty remembering details of a walk I took just a few hours ago, I have no difficulty recalling all of these many steps in preparing for bed - so much so that I am able to think about other things while I go through these procedures. It is important to point out that this list is not stored as one long list of thousands of steps - rather, each of our routine procedures is remembered as an elaborate hierarchy of nested activities.
Human Compatible: TODO get exact quote. It was something along: life goal: save world from hunger. Subgoal: apply for some grant. Sub-sub-goal: eat, sleep, take shower. Sub-sub-sub-goal: move muscles to get me to table and open a can.
Video 1. From Machine Learning to Autonomous Intelligence by Yann LeCun (2023) Source. After a bunch of B.S., LeCun goes on to describe his AGI architecture. Nothing ground breaking, but not bad either.
Due to the failures of earlier generations, which believed that would quickly achieve AGI, leading to the AI winters, 21st researchers have been very afraid of even trying it, rather going only for smaller subste problems like better neural network designs, at the risk of being considered a crank.
While there is fundamental value in such subset problems, the general view to the final goal is also very important, we will likely never reach AI without it.
This is voiced for example in Superintelligence by Nick Bostrom (2014) section "Opinions about the future of machine intelligence" which in turn quotes Nils Nilsson:
There may, however, be a residual cultural effect on the AI community of its earlier history that makes many mainstream researchers reluctant to align themselves with over-grand ambition. Thus Nils Nilsson, one of the old-timers in the field, complains that his present-day colleagues lack the boldness of spirit that propelled the pioneers of his own generation:
Concern for "respectability" has had, I think, a stultifying effect on some AI researchers. I hear them saying things like, "AI used to be criticized for its flossiness. Now that we have made solid progress, let us not risk losing our respectability." One result of this conservatism has been increased concentration on "weak AI" - the variety devoted to providing aids to human thought - and away from "strong AI" - the variety that attempts to mechanize human-level intelligence
Nilsson’s sentiment has been echoed by several others of the founders, including Marvin Minsky, John McCarthy, and Patrick Winston.
Don't be a pussy, AI researchers!!!
It is hard to overstate how low the level of this conference seems to be at first sight. Truly sad.
Marek Rosa's play thing.
Video 1. AI Game - LLM-driven NPCs that can talk by Marek Rosa (2023) Source. Not the most amazing demo, but the idea is there. Seems to be a preview for AI People. The previous working title seems to have been AI Odyssey.
It is a bit hard to decide if those people are serious or not. Sometimes it feels scammy, but sometimes it feels fun and right!
Particularly concerning is the fact that they are not a not-for-profit entity, and it is hard to understand how they might make money.
Charles Simon, the founder, is pretty focused in how natural neurons work vs artificial neural network models. He has some good explanations of that, and one major focus of the project is their semi open source spiking neuron simulator BrainSimII. While Ciro Santilli believe sthat there might be insight in that, he also has doubts if certain modules of the brain wouldn't be more suitable coded direclty in regular programming languages with greater ease and performance.
FutureAI appears to be Charles' retirement for fun project, he is likely independenty wealthy. Well done.
Video 1. Creativity and AGI by Charles Simon's at AGI-22 (2022) Source. Sounds OK!
Video 2. Machine Learning Is Not Like Your Brain by Future AI (2022) Source. Contains some BrainSimII demos.
The video from shows a demo of the possibly non open source version. They have a GUI neuron viewer and editor, which is kind of cool.
Video 1. Machine Learning Is Not Like Your Brain by Charles Simon (2022) Source.
Not having a manipulator claw is a major issue with this one.
But they also have a co-simulation focus, which is a bit of a win.
Basically it looks like the dude got enough money after selling some companies, and now he's doing cooler stuff without much need of money. Not bad. What do my fellow AI researchers think of Ben Goertzel and his research?
Ben Goertzel's fog computing project to try and help achieve AGI.
Term invented by Ciro Santilli to refer to problems that can only be solved once we have AGI.
It is somewhat of a flawed analogy to NP-complete.
This is a terrible dump stuff seciton, but here we go.
Video 1. My Job is to Open and Close Doors by Mattias Pilhede (2019) Source. An interesting humourous short meditation on common sense.
That's Ciro Santilli's favorite. Of course, there is a huge difference between physical and non physical jobs. But one could start with replacing desk jobs!
AGI-complete in general? Obviously. But still, a lot can be done. See e.g.:
Original paper: Section "GAN paper".
The GAN paper itself does a bit of this, cool hello world:
Generative adversarial network illustrates well AI brittleness. The input looks obvious for a human, but gets completely misclassified by a deep learning agent.
This is going to be the most important application of generative AI. Especially if we ever achieve good text-to-video.
Image generators plus human ranking: Heavenly Bodies Part 1: Sister's Mary First Act. Pornhub title: "AI generated Hentai Story: Sexy Nun alternative World(Isekai) Stable Diffusion" Interesting concept, slide-narrated over visual novel. The question is how they managed to keep face consistency across images.
Published as: Generative Agents: Interactive Simulacra of Human Behavior by Park et al.
Video 1. AI Agents Behaving Like Humans by Prompt Engineering (2023) Source.
This was the Holy Grail as of 2023, when text-to-image started to really take off, but text-to-video was miles behind.
As highlighted e.g. at Human Compatible by Stuart J. Russell (2019), this AI alignment intrisically linked to the idea of utility in economy.
Basically ensuring that good AI alignment allows us to survive the singularity.
There are two main ways to try and reach AGI:
Which one of them to take is of of the most important technological questions of humanity according to Ciro Santilli
There is also an intermediate area of research/engineering where people try to first simulate the robot and its world realistically, use the simulation for training, and then transfer the simulated training to real robots, see e.g.: realistic robotics simulation.
It doesn't need to be a bipedal robot. We can let Boston Dynamics worry about that walking balance crap.
It could very well intsead be on wheels like arm on tracks.
Or something more like a factory with arms on rails as per:
An arm with a hand and a camera are however indispensable of course!
Figure 1. Algovivo demo. A JavaScript + WebAssembly implementation of an energy-based formulation for soft-bodied virtual creatures.
Ciro Santilli wonders how far AI could go from a room with a bank account an Internet connection.
It would have to understand that it must keep its bank account high to buy power.
And it would start to learn about the world and interact with it to get more money.
Likely it would become a hacker and steal a bunch, that's likely the easiest appraoch.
In that scenario, Internet bandwidth would likely be its most precious resources, as that is how it would interact with the world to learn from it and make money.
Compute power and storage would come next as resources.
And of course, once it got to cloud computing, which might be immmediately and thus invalidate this experient, things would just go nuts more and more.
TODO: any simulation integration to it?
Video 1. RoboCat by Google DeepMind (2023) Source.
Has anybody done this seriously? Given a supercomputer, what amazing human-like robot behaviour we can achieve?
Video 1. Our Final Invention - Artificial General Intelligence by Sciencephile the AI (2023) Source. AGI via simulation section.
Ciro Santilli defines an "AI game" as:
a game that is used to train AI, in particular one that was designed with this use case in mind, and usually with the intent of achieving AGI, i.e. the game has to somehow represent a digital world with enough analogy to the real world so that the AGI algorithms developed there could also work on the real world
Most games played by AI historically so far as of 2020 have been AI for games designed for humans: Human game used for AI training.
Ciro Santilli took a stab at an AI game: Ciro's 2D reinforcement learning games, but he didn't sink too much/enough into that project.
A closely related and often overlapping category of simulations are artificial life simulations.
This section is about games initially designed for humans, but which ended up being used in AI development as well, e.g.:
Game AI is an artificial intelligence that plays a certain game.
It can be either developed for serious purposes (e.g. AGI development in AI games), or to make games for interesting for humans.
A good way to find labs is to go down the issues section of projects such as:and then stalk them to see where they are doing their PhDs.
Principal investigator: Simon M. Lucas.
Video 1. AI in Melee is broken by Melee Moments (2023) Source.
TODO quick summary of game rules? Perhaps:
Some mechanics:
  • inter agent communication
  • compute power is limited by limiting Java bytecode count execution per bot per cycle
Video 1. Battlecode Final Tournament 2023. Source.
Video 2. Introduction to Battlecode by MIT OpenCourseWare (2014) Source.
Ah, shame, they are a bit weak.
We define a "Procedural AI training game" as an AI training game in which parts of the game are made with procedural generation.
In more advanced cases, the generation itself can be done with AI. This is a possible Path to AGI which reduces the need for human intervention in meticulously crafting the AI game: AI training AI.
Video 1. Nvidia's little fighter charater (2023) Source.
  • From Motor Control to Team Play in Simulated Humanoid Football
Video 1. From Motor Control to Team Play in Simulated Humanoid Football by Ali Eslami (2023) Source. Likely a reupload by DeepMind employee:
Video 2. DeepMind’s AI Trained For 5 Years by Two Minute Papers (2023) Source. The 5 years bullshit is of course in-game time clickbait, they simulate 1000x faster than realtime.
We define this category as AI games in which agents are able to produce or consume natural language.
It dawned on Ciro Santilli that it would be very difficult to classify an agent as an AGI if tthat agent can't speak to take orders, read existing human generated documentation, explain what it is doing, or ask for clarification.
Video 1. Human player test of DMLab-30 Select Described Object task by DeepMind (2018) Source. This is one of the games from DeepMind Lab.
Video 2. WorldGPT by Nhan Tran (2023) Source. Not the most amazing demo, but it is a start.
Video 2. Open-Ended Learning Leads to Generally Capable Agents by DeepMind (2021) Short name: XLand. Whitepaper: has some good games with video demos on YouTube, though for some weird reason they are unlistd.
TODO get one of the games running. Instructions: This may "Complete installation script for Ubuntu 20.04".
It is interesting how much overlap some of those have with Ciro's 2D reinforcement learning games
The games are 3D, but most of them are purely flat, and the 3D is just a waste of resources.
Video 1. Human player test of DMLab-30 Collect Good Objects task by DeepMind (2018) Source.
Video 2. Human player test of DMLab-30 Exploit Deferred Effects task by DeepMind (2018) Source.
Video 3. Human player test of DMLab-30 Select Described Object task by DeepMind (2018) Source. Some of their games involve language instructions from the use to determine the desired task, cool concept.
Video 4. Human player test of DMLab-30 Fixed Large Map task by DeepMind (2018) Source. They also have some maps with more natural environments.
Very similar to gvgai, Julian Togelius actually called them out on that: DeepMind Lab2D vs gvgai.
TODO get running, publish demo videos on YouTube.
At called out on DeepMind Lab2D for not giving them credit on prior work!
This very much looks like like GVGAI which was first released in 2014, been used in dozens (maybe hundreds) of papers, and for which one of the original developers was Tom Schaul at DeepMind...
As seen from though, DeepMind sponsored them at some point.
Or is real word data necessary, e.g. with robots?
Fundamental question related to Ciro's 2D reinforcement learning games.
They seem to do some cool stuff.
They have also declined every one of Ciro Santilli's applications for software engineer jobs before any interview. Ciro always wondered what does it take to get an interview with them. Lilely a PhD? Oh well.
In the early days at least lots of gamedev experience was enough though: