Dude's a legend. Sells company for a few million. Then forks the open source project next year. Love it.
Who are the developers that are making the most money through GitHub sponsors? by Ciro Santilli 35 Updated 2025-01-10 +Created 1970-01-01
Got it working as mentioned at: github.com/cirosantilli/feathers-chat/tree/sequelize-pg
Bibliography:
There's also a
heroku
branch at: github.com/feathersjs/feathers-chat/tree/heroku, but it also seems to use NeDB? So you can have a filesystem in Heroku? Doesn't seem so: stackoverflow.com/questions/42775418/heroku-local-persistent-storagegothinkster/realworld implementations based on Express.js.
By default, NASM places a
.symtab
on the executable as well.This is only used for debugging. Without the symbols, we are completely blind, and must reverse engineer everything.
You can strip it with
objcopy
, and the executable will still run. Such executables are called "stripped executables". History of the electromagnetic theory of light by Ciro Santilli 35 Updated 2025-01-10 +Created 1970-01-01
reconstruction/ecoli/flat/condition/nutrient/minimal.tsv
contains the nutrients in a minimal environment in which the cell survives:If we compare that to"molecule id" "lower bound (units.mmol / units.g / units.h)" "upper bound (units.mmol / units.g / units.h)" "ADP[c]" 3.15 3.15 "PI[c]" 3.15 3.15 "PROTON[c]" 3.15 3.15 "GLC[p]" NaN 20 "OXYGEN-MOLECULE[p]" NaN NaN "AMMONIUM[c]" NaN NaN "PI[p]" NaN NaN "K+[p]" NaN NaN "SULFATE[p]" NaN NaN "FE+2[p]" NaN NaN "CA+2[p]" NaN NaN "CL-[p]" NaN NaN "CO+2[p]" NaN NaN "MG+2[p]" NaN NaN "MN+2[p]" NaN NaN "NI+2[p]" NaN NaN "ZN+2[p]" NaN NaN "WATER[p]" NaN NaN "CARBON-DIOXIDE[p]" NaN NaN "CPD0-1958[p]" NaN NaN "L-SELENOCYSTEINE[c]" NaN NaN "GLC-D-LACTONE[c]" NaN NaN "CYTOSINE[c]" NaN NaN
reconstruction/ecoli/flat/condition/nutrient/minimal_plus_amino_acids.tsv
, we see that it adds the 20 amino acids on top of the minimal condition:so we guess that"L-ALPHA-ALANINE[p]" NaN NaN "ARG[p]" NaN NaN "ASN[p]" NaN NaN "L-ASPARTATE[p]" NaN NaN "CYS[p]" NaN NaN "GLT[p]" NaN NaN "GLN[p]" NaN NaN "GLY[p]" NaN NaN "HIS[p]" NaN NaN "ILE[p]" NaN NaN "LEU[p]" NaN NaN "LYS[p]" NaN NaN "MET[p]" NaN NaN "PHE[p]" NaN NaN "PRO[p]" NaN NaN "SER[p]" NaN NaN "THR[p]" NaN NaN "TRP[p]" NaN NaN "TYR[p]" NaN NaN "L-SELENOCYSTEINE[c]" NaN NaN "VAL[p]" NaN NaN
NaN
in theupper mound
likely means infinite.We can try to understand the less obvious ones:ADP
: TODOPI
: TODOPROTON[c]
: presumably a measure of pHGLC[p]
: glucose, this can be seen by comparingminimal.tsv
withminimal_no_glucose.tsv
AMMONIUM
: ammonium. This appears to be the primary source of nitrogen atoms for producing amino acids.CYTOSINE[c]
: hmmm, why is external cytosine needed? Weird.
- reconstruction/ecoli/flat/reconstruction/ecoli/flat/condition/timeseries/000000_basal.tsv
reconstruction/ecoli/flat/reconstruction/ecoli/flat/condition/timeseries/` contains sequences of conditions for each time. For example: *
contains:
"time (units.s)" "nutrients" 0 "minimal"
which means just using
reconstruction/ecoli/flat/condition/nutrient/minimal.tsvuntil infinity. That is the default one used by
runSim.py, as can be seen from
./out/manual/wildtype_000000/000000/generation_000000/000000/simOut/Environment/attributes/nutrientTimeSeriesLabelwhich contains just
000000_basal. *
reconstruction/ecoli/flat/reconstruction/ecoli/flat/condition/timeseries/000001_cut_glucose.tsv
is more interesting and contains:so we see that this will shift the conditions half-way to a condition that will eventually kill the bacteria because it will run out of glucose and thus energy!"time (units.s)" "nutrients" 0 "minimal" 1200 "minimal_no_glucose"
Timeseries can be selected with--variant nutrientTimeSeries X Y
, see also: run variants.We can use that variant with:VARIANT="condition" FIRST_VARIANT_INDEX=1 LAST_VARIANT_INDEX=1 python runscripts/manual/runSim.py
reconstruction/ecoli/flat/condition/condition_defs.tsv
contains lines of form:"condition" "nutrients" "genotype perturbations" "doubling time (units.min)" "active TFs" "basal" "minimal" {} 44.0 [] "no_oxygen" "minimal_minus_oxygen" {} 100.0 [] "with_aa" "minimal_plus_amino_acids" {} 25.0 ["CPLX-125", "MONOMER0-162", "CPLX0-7671", "CPLX0-228", "MONOMER0-155"]
condition
refers to entries inreconstruction/ecoli/flat/condition/condition_defs.tsv
nutrients
refers to entries underreconstruction/ecoli/flat/condition/nutrient/
, e.g.reconstruction/ecoli/flat/condition/nutrient/minimal.tsv
orreconstruction/ecoli/flat/condition/nutrient/minimal_plus_amino_acids.tsv
genotype perturbations
: there aren't any in the file, but this suggests that genotype modifications can also be incorporated heredoubling time
: TODO experimental data? Because this should be a simulation output, right? Or do they cheat and fix doubling by time?active TFs
: this suggests that they are cheating transcription factors here, as those would ideally be functions of other more basic inputs
Covert Lab lead.
Ciro Santilli really likes this dude, because Ciro really likes simulation.
If you pass parallel light.
This notation is so confusing! People often don't manage to explain the intuition behind it, why this is an useful notation. When you see Indian university entry exam level memorization classes about this, it makes you want to cry.
The key reason why term symbols matter are Hund's rules, which allow us to predict with some accuracy which electron configurations of those states has more energy than the other.
web.chem.ucsb.edu/~devries/chem218/Term%20symbols.pdf puts it well: electron configuration notation is not specific enough, as each such notation e.g. 1s2 2s2 2p2 contains several options of spins and z angular momentum. And those affect energy.
This is why those symbols are often used when talking about energy differences: they specify more precisely which levels you are talking about.
Basically, each term symbol appears to represent a group of possible electron configurations with a given quantum angular momentum.
We first fix the energy level by saying at which orbital each electron can be (hyperfine structure is ignored). It doesn't even have to be the ground state: we can make some electrons excited at will.
The best thing to learn this is likely to draw out all the possible configurations explicitly, and then understand what is the term symbol for each possible configuration, see e.g. term symbols for carbon ground state.
It also confusing how uppercase letters S, P and D are used, when they do not refer to orbitals s, p and d, but rather to states which have the same angular momentum as individual electrons in those states.
It is also very confusing how extremelly close it looks to spectroscopic notation!
The form of the term symbol is:
The can be understood directly as the degeneracy, how many configurations we have in that state.
Bibliography:
- chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Spectroscopy/Electronic_Spectroscopy/Spin-orbit_Coupling/Atomic_Term_Symbols
- chem.libretexts.org/Courses/Pacific_Union_College/Quantum_Chemistry/08%3A_Multielectron_Atoms/8.08%3A_Term_Symbols_Gives_a_Detailed_Description_of_an_Electron_Configuration The PDF origin: web.chem.ucsb.edu/~devries/chem218/Term%20symbols.pdf
- chem.libretexts.org/Bookshelves/Inorganic_Chemistry/Inorganic_Coordination_Chemistry_(Landskron)/08%3A_Coordination_Chemistry_III_-_Electronic_Spectra/8.01%3A_Quantum_Numbers_of_Multielectron_Atoms
- physics.stackexchange.com/questions/8567/how-do-electron-configuration-microstates-map-to-term-symbols How do electron configuration microstates map to term symbols?
There are unlisted articles, also show them or only show them.