ARTIQ by Ciro Santilli 34 Updated +Created
Biconvex spherical lens by Ciro Santilli 34 Updated +Created
Focal length
Each side is a sphere section. They don't have to have the same radius, they are still simple to understand with different radiuses.
The two things you have to have in mind that this does are:
  • converges parallel light to a point at center at distance known as the focal length.
    This is for example why you can use lenses to burn things with Sun rays, which are basically parallel.
    Conversely, if the input is a point light source at the focal length, it gets converted into parallel light.
  • image formation: it converges all rays coming from a given source point to a single point image. This amplifies the signal, and forms an image at a plane.
    The source image can be far away, and the virtual image can be close to the lens. This is exactly what we need for a camera.
    For each distance on one side, it only works for another distance on the other side. So when we set the distance between the lens and the detector, this sets the distance of the source object, i.e. the focus. The equation is:
    where and are the two distances.
Basically, energy supply has to be modulated rather quickly, because we spend a lot sometimes, and very little other times.
Even not turning it off quickly enough is a problem, as it starts to generate free radicals which fuck you up.
If control came from the nucleus, it has no way to address different mitochondria. But it might be that only one of the mitochondria needs the change. If the nucleus tells all mitochondria to stop producing when only one is full, the others are going to say: "nope, I'm not full, continue producing!" and the one that need to stop will have its signal overriden by the others.
Special-purpose acquisition company by Ciro Santilli 34 Updated +Created
This is some fishy, fishy business.
Pickering series by Ciro Santilli 34 Updated +Created
That is, two electrons per atomic orbital, each with a different spin.
As shown at Schrödinger equation solution for the helium atom, they do repel each other, and that affects their measurable energy.
However, this energy is still lower than going up to the next orbital. TODO numbers.
This changes however at higher orbitals, notably as approximately described by the aufbau principle.
Gospel of Matthew by Ciro Santilli 34 Updated +Created
The first chapter of the New Testament.
Eukaryotic large ribosome subunit by Ciro Santilli 34 Updated +Created
Stanford Research Park by Ciro Santilli 34 Updated +Created
.text section by Ciro Santilli 34 Updated +Created
Now that we've done one section manually, let's graduate and use the readelf -S of the other sections:
  [Nr] Name              Type             Address           Offset
       Size              EntSize          Flags  Link  Info  Align
  [ 2] .text             PROGBITS         0000000000000000  00000210
       0000000000000027  0000000000000000  AX       0     0     16
.text is executable but not writable: if we try to write to it Linux segfaults. Let's see if we really have some code there:
objdump -d hello_world.o
gives:
hello_world.o:     file format elf64-x86-64


Disassembly of section .text:

0000000000000000 <_start>:
   0:       b8 01 00 00 00          mov    $0x1,%eax
   5:       bf 01 00 00 00          mov    $0x1,%edi
   a:       48 be 00 00 00 00 00    movabs $0x0,%rsi
  11:       00 00 00
  14:       ba 0d 00 00 00          mov    $0xd,%edx
  19:       0f 05                   syscall
  1b:       b8 3c 00 00 00          mov    $0x3c,%eax
  20:       bf 00 00 00 00          mov    $0x0,%edi
  25:       0f 05                   syscall
If we grep b8 01 00 00 on the hd, we see that this only occurs at 00000210, which is what the section says. And the Size is 27, which matches as well. So we must be talking about the right section.
This looks like the right code: a write followed by an exit.
The most interesting part is line a which does:
movabs $0x0,%rsi
to pass the address of the string to the system call. Currently, the 0x0 is just a placeholder. After linking happens, it will be modified to contain:
4000ba: 48 be d8 00 60 00 00    movabs $0x6000d8,%rsi
This modification is possible because of the data of the .rela.text section.
Dynamic linking sections by Ciro Santilli 34 Updated +Created
This program did not have certain dynamic linking related sections because we linked it minimally with ld.
However, if you compile a C hello world with GCC 8.2:
gcc -o main.out main.c
some other interesting sections would appear.
Given the view of the Standard Model where the electron and quarks are just completely separate matter fields, there is at first sight no clear theoretical requirement for that.
As mentioned e.g. at QED and the men who made it: Dyson, Feynman, Schwinger, and Tomonaga by Silvan Schweber (1994) chapter 1.6 "Hole theory", Dirac initially wanted to think of the holes in his hole theory as the protons, as a way to not have to postulate a new particle, the positron, and as a way to "explain" the proton in similar terms. Others however soon proposed arguments why the positron would need to have the same mass, and this idea had to be discarded.
Very low frequency by Ciro Santilli 34 Updated +Created
Notably used for communication with submarines, so in particular crucial as part of sending an attack signal to that branch of the nuclear triad.
X-ray by Ciro Santilli 34 Updated +Created
Source code overview by Ciro Santilli 34 Updated +Created
The key model database is located in the source code at reconstruction/ecoli/flat.
Let's try to understand some interesting looking, with a special focus on our understanding of the tiny E. Coli K-12 MG1655 operon thrLABC part of the metabolism, which we have well understood at Section "E. Coli K-12 MG1655 operon thrLABC".
We'll realize that a lot of data and IDs come from/match BioCyc quite closely.
  • reconstruction/ecoli/flat/compartments.tsv contains cellular compartment information:
    "abbrev" "id"
    "n" "CCO-BAC-NUCLEOID"
    "j" "CCO-CELL-PROJECTION"
    "w" "CCO-CW-BAC-NEG"
    "c" "CCO-CYTOSOL"
    "e" "CCO-EXTRACELLULAR"
    "m" "CCO-MEMBRANE"
    "o" "CCO-OUTER-MEM"
    "p" "CCO-PERI-BAC"
    "l" "CCO-PILUS"
    "i" "CCO-PM-BAC-NEG"
  • reconstruction/ecoli/flat/promoters.tsv contains promoter information. Simple file, sample lines:
    "position" "direction" "id" "name"
    148 "+" "PM00249" "thrLp"
    corresponds to E. Coli K-12 MG1655 promoter thrLp, which starts as position 148.
  • reconstruction/ecoli/flat/proteins.tsv contains protein information. Sample line corresponding to e. Coli K-12 MG1655 gene thrA:
    "aaCount" "name" "seq" "comments" "codingRnaSeq" "mw" "location" "rnaId" "id" "geneId"
    [91, 46, 38, 44, 12, 53, 30, 63, 14, 46, 89, 34, 23, 30, 29, 51, 34, 4, 20, 0, 69] "ThrA" "MRVL..." "Location information from Ecocyc dump." "AUGCGAGUGUUG..." [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 89103.51099999998, 0.0, 0.0, 0.0, 0.0] ["c"] "EG10998_RNA" "ASPKINIHOMOSERDEHYDROGI-MONOMER" "EG10998"
    so we understand that:
    • aaCount: amino acid count, how many of each of the 20 proteinogenic amino acid are there
    • seq: full sequence, using the single letter abbreviation of the proteinogenic amino acids
    • mw; molecular weight? The 11 components appear to be given at reconstruction/ecoli/flat/scripts/unifyBulkFiles.py:
      molecular_weight_keys = [
        '23srRNA',
        '16srRNA',
        '5srRNA',
        'tRNA',
        'mRNA',
        'miscRNA',
        'protein',
        'metabolite',
        'water',
        'DNA',
        'RNA' # nonspecific RNA
        ]
      so they simply classify the weight? Presumably this exists for complexes that have multiple classes?
    • location: cell compartment where the protein is present, c defined at reconstruction/ecoli/flat/compartments.tsv as cytoplasm, as expected for something that will make an amino acid
  • reconstruction/ecoli/flat/rnas.tsv: TODO vs transcriptionUnits.tsv. Sample lines:
    "halfLife" "name" "seq" "type" "modifiedForms" "monomerId" "comments" "mw" "location" "ntCount" "id" "geneId" "microarray expression"
    174.0 "ThrA [RNA]" "AUGCGAGUGUUG..." "mRNA" [] "ASPKINIHOMOSERDEHYDROGI-MONOMER" "" [0.0, 0.0, 0.0, 0.0, 790935.00399999996, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ["c"] [553, 615, 692, 603] "EG10998_RNA" "EG10998" 0.0005264904
    • halfLife: half-life
    • mw: molecular weight, same as in reconstruction/ecoli/flat/proteins.tsv. This molecule only have weight in the mRNA class, as expected, as it just codes for a protein
    • location: same as in reconstruction/ecoli/flat/proteins.tsv
    • ntCount: nucleotide count for each of the ATGC
    • microarray expression: presumably refers to DNA microarray for gene expression profiling, but what measure exactly?
  • reconstruction/ecoli/flat/sequence.fasta: FASTA DNA sequence, first two lines:
    >E. coli K-12 MG1655 U00096.2 (1 to 4639675 = 4639675 bp)
    AGCTTTTCATTCTGACTGCAACGGGCAATATGTCTCTGTGTGGATTAAAAAAAGAGTGTCTGATAGCAGCTTCTG
  • reconstruction/ecoli/flat/transcriptionUnits.tsv: transcription units. We can observe for example the two different transcription units of the E. Coli K-12 MG1655 operon thrLABC in the lines:
    "expression_rate" "direction" "right" "terminator_id"  "name"    "promoter_id" "degradation_rate" "id"       "gene_id"                                   "left"
    0.0               "f"         310     ["TERM0-1059"]   "thrL"    "PM00249"     0.198905992329492 "TU0-42486" ["EG11277"]                                  148
    657.057317358791  "f"         5022    ["TERM_WC-2174"] "thrLABC" "PM00249"     0.231049060186648 "TU00178"   ["EG10998", "EG10999", "EG11000", "EG11277"] 148
  • reconstruction/ecoli/flat/genes.tsv
    "length" "name"                      "seq"             "rnaId"      "coordinate" "direction" "symbol" "type" "id"      "monomerId"
    66       "thr operon leader peptide" "ATGAAACGCATT..." "EG11277_RNA" 189         "+"         "thrL"   "mRNA" "EG11277" "EG11277-MONOMER"
    2463     "ThrA"                      "ATGCGAGTGTTG"    "EG10998_RNA" 336         "+"         "thrA"   "mRNA" "EG10998" "ASPKINIHOMOSERDEHYDROGI-MONOMER"
  • reconstruction/ecoli/flat/metabolites.tsv contains metabolite information. Sample lines:
    "id"                       "mw7.2" "location"
    "HOMO-SER"                 119.12  ["n", "j", "w", "c", "e", "m", "o", "p", "l", "i"]
    "L-ASPARTATE-SEMIALDEHYDE" 117.104 ["n", "j", "w", "c", "e", "m", "o", "p", "l", "i"]
    In the case of the enzyme thrA, one of the two reactions it catalyzes is "L-aspartate 4-semialdehyde" into "Homoserine".
    Starting from the enzyme page: biocyc.org/gene?orgid=ECOLI&id=EG10998 we reach the reaction page: biocyc.org/ECOLI/NEW-IMAGE?type=REACTION&object=HOMOSERDEHYDROG-RXN which has reaction ID HOMOSERDEHYDROG-RXN, and that page which clarifies the IDs:
    so these are the compounds that we care about.
  • reconstruction/ecoli/flat/reactions.tsv contains chemical reaction information. Sample lines:
    "reaction id" "stoichiometry" "is reversible" "catalyzed by"
    
    "HOMOSERDEHYDROG-RXN-HOMO-SER/NAD//L-ASPARTATE-SEMIALDEHYDE/NADH/PROTON.51."
      {"NADH[c]": -1, "PROTON[c]": -1, "HOMO-SER[c]": 1, "L-ASPARTATE-SEMIALDEHYDE[c]": -1, "NAD[c]": 1}
      false
      ["ASPKINIIHOMOSERDEHYDROGII-CPLX", "ASPKINIHOMOSERDEHYDROGI-CPLX"]
    
    "HOMOSERDEHYDROG-RXN-HOMO-SER/NADP//L-ASPARTATE-SEMIALDEHYDE/NADPH/PROTON.53."
      {"NADPH[c]": -1, "NADP[c]": 1, "PROTON[c]": -1, "L-ASPARTATE-SEMIALDEHYDE[c]": -1, "HOMO-SER[c]": 1
      false
      ["ASPKINIIHOMOSERDEHYDROGII-CPLX", "ASPKINIHOMOSERDEHYDROGI-CPLX"]
    • catalized by: here we see ASPKINIHOMOSERDEHYDROGI-CPLX, which we can guess is a protein complex made out of ASPKINIHOMOSERDEHYDROGI-MONOMER, which is the ID for the thrA we care about! This is confirmed in complexationReactions.tsv.
  • reconstruction/ecoli/flat/complexationReactions.tsv contains information about chemical reactions that produce protein complexes:
    "process" "stoichiometry" "id" "dir"
    "complexation"
      [
        {
          "molecule": "ASPKINIHOMOSERDEHYDROGI-CPLX",
          "coeff": 1,
          "type": "proteincomplex",
          "location": "c",
          "form": "mature"
        },
        {
          "molecule": "ASPKINIHOMOSERDEHYDROGI-MONOMER",
          "coeff": -4,
          "type": "proteinmonomer",
          "location": "c",
          "form": "mature"
        }
      ]
    "ASPKINIHOMOSERDEHYDROGI-CPLX_RXN"
    1
    The coeff is how many monomers need to get together for form the final complex. This can be seen from the Summary section of ecocyc.org/gene?orgid=ECOLI&id=ASPKINIHOMOSERDEHYDROGI-MONOMER:
    Aspartate kinase I / homoserine dehydrogenase I comprises a dimer of ThrA dimers. Although the dimeric form is catalytically active, the binding equilibrium dramatically favors the tetrameric form. The aspartate kinase and homoserine dehydrogenase activities of each ThrA monomer are catalyzed by independent domains connected by a linker region.
    Fantastic literature summary! Can't find that in database form there however.
  • reconstruction/ecoli/flat/proteinComplexes.tsv contains protein complex information:
    "name" "comments" "mw" "location" "reactionId" "id"
    "aspartate kinase / homoserine dehydrogenase"
    ""
    [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 356414.04399999994, 0.0, 0.0, 0.0, 0.0]
    ["c"]
    "ASPKINIHOMOSERDEHYDROGI-CPLX_RXN"
    "ASPKINIHOMOSERDEHYDROGI-CPLX"
  • reconstruction/ecoli/flat/protein_half_lives.tsv contains the half-life of proteins. Very few proteins are listed however for some reason.
  • reconstruction/ecoli/flat/tfIds.csv: transcription factors information:
    "TF"   "geneId"  "oneComponentId"  "twoComponentId" "nonMetaboliteBindingId" "activeId" "notes"
    "arcA" "EG10061" "PHOSPHO-ARCA"    "PHOSPHO-ARCA"
    "fnr"  "EG10325" "FNR-4FE-4S-CPLX" "FNR-4FE-4S-CPLX"
    "dksA" "EG10230"
AlphaGo by Ciro Santilli 34 Updated +Created
CPT symmetry by Ciro Santilli 34 Updated +Created

Unlisted articles are being shown, click here to show only listed articles.