The history of light if funny.
First people thought it was a particle, as per corpuscular theory of light, notably Newton supported the corpuscular theory of light.
But then evidence of the diffraction of light start to become unbearably strong, culminating in the Arago spot.
And finally it was undertood from Maxwell's equations that light is a form of electromagnetic radiation, as its speed was perfectly predicted by the theory.
But then evidence of particle nature started to surface once again with the photoelectric effect. Physicists must have been driven mad by all these changes.
The Quantum Story by Jim Baggott (2011) page 2 mentions how newton's support for the corpuscular theory of light led it to be held for a very long time, even when evidence of the wave theory of light was becoming overwhelming.
Video 1.
The Story of Light by Bell Labs (2015)
Source. Gives some ideas of the history of fiber optics. Features: Herwig Kogelnik.
Video 3. . Source. 2008 at MIT. Theory and demonstration.
These are closely related to lasers, as they do a similar basic job: take a DC source as input and amplify light. Lasers just happen to use the input voltage to also generate the incoming light.
These are pretty cool, they are basically a laser
This one was a huge advance it seems.
Video 1.
Erbium-doped fiber amplifier by Millennium Technology Prize
. Source.
It's the thing that allows you to connect fiber optics into a compter, or the corresponding port for the thing.
Many of them can take two fibers as input/output because fiber optics cables often come in pairs because it is needed for duplex.
Video 1.
How to choose SFP transceiver for fiber optical cable by FASTCABLING
. Source.
From a practical point of view single-mode:
  • upside: can go further without a repeater. In multi-mode optical fiber, different modes travel at different speeds, and start interfering with each other at some point
  • downside: lower bandwitdh, because we can fit less modes into it
As such, typical applications are:
From a mathematical point of view:
Video 1.
Multi-mode fiber demonstration by Shaoul Ezekiel
. Source. 2008, MIT.
Figure 2.
2009 Nobel Prize lecture
. Poor Charles was too debilitated by Alzheimer's disease to give the talk himself! But if you've got a pulse, you can get the prize, so all good.
The book is a bit slow until Charles K. Kao comes along, then it gets exciting.
This section is about stuff efficiently getting light into or out of optical fibers, or joining two optical fibers together end to end so that light goes through.
Historically this has been an important development, as it is much harder than with wires since optical fiber has to be very narrow to work properly, e.g. this is mentioned a lot in City of Light: The Story of Fiber Optics.
Video 1.
Coupling Laser beams into Fiber Optic Cable by Lee's Lab
. Source.
Video 1.
Donated Eskalab Spectrophotometer by CuriousMarc
. Source.
Bibliography:
Video 1.
Replicating the Fizeau Apparatus by AlphaPhoenix (2018)
Source. Modern reconstruction with a laser and digital camera.
Video 2.
Visualizing video at the speed of light - one trillion frames per second by MIT (2011)
Source. Fast cameras. OK, this takes it to the next level.
It is so mind blowing that people believed in this theory. How can you think that, when you turn on a lamp and then you see? Obviously, the lamp must be emitting something!!!
Then comes along this epic 2002 paper: pubmed.ncbi.nlm.nih.gov/12094435/ "Fundamentally misunderstanding visual perception. Adults' belief in visual emissions". TODO review methods...
In special relativity, it is impossible to travel faster than light.
One argument of why, is that if you could travel faster than light, then you could send a message to a point in Spacetime that is spacelike-separated from the present. But then since the target is spacelike separated, there exists a inertial frame of reference in which that event happens before the present, which would be hard to make sense of.
Even worse, it would be possible to travel back in time:
Figure 1.
Spacetime diagram illustrating how faster-than-light travel implies time travel
. Legend an explanation are shown in this answer.
Notably used for communication with submarines, so in particular crucial as part of sending an attack signal to that branch of the nuclear triad.
This is likely the easiest one to produce as the frequencies are lower, which is why it was discovered first. TODO original setup.
Also because it is transparent to brick and glass, (though not metal) it becomes good for telecommunication.
Some notable subranges:
Micro means "small wavelength compared to radio waves", not micron-sized.
Microwave production and detection is incredibly important in many modern applications:
Microwave only found applications into the 1940s and 1950s, much later than radio, because good enough sources were harder to develop.
One notable development was the cavity magnetron in 1940, which was the basis for the original radar systems of World War II.
Apparently, DC current comes in, and microwaves come out.
TODO: sample power efficiently of this conversion and output spectrum of this conversion on some cheap device we can buy today.
Video 1.
Magnetron, How does it work? by Lesics (2020)
Source.
Video 2.
Device that Won WW2 by Curious Droid
. Source.
Finance is a cancer of society. But I have to admit it, it's kind of cool.
arstechnica.com/information-technology/2016/11/private-microwave-networks-financial-hft/ The secret world of microwave networks (2016) Fantastic article.
Video 1.
Lasers Transmit Market Data and Trade Execution by Anova Technologies (2014)
Source. Their system is insane. It compensates in real time for wind movements of towers. They also have advanced building tracking for things that might cover line of sight.
Video 1.
How Microwaves Work by National MagLab (2017)
Source. A bit meh. Does not mention the word cavity magnetron!
Video 2.
How a Microwave Oven Works by EngineerGuy
. Source. Cool demonstration of the standing waves in the cavity with cheese!
420 to 680 nm for sure, but larger ranges are observable in laboratory conditions.
Figure 1.
Toshiba D-088 dental X-ray tube
. Source.
Video 1.
William Coolidge explains medical imaging and X-rays (1940).
Source. Video sponsored by General Electric. A cool insight of this video is that a hot cathode is a more reliable electron source. Previous systems, and presumably including the discovery of X-rays, leftover gas in the tube was used. But this makes things more difficult to control, as we also want to remove as much gas as possible from the vacuum, otherwise electrons collide with the gas and lose energy before hitting the anode.
Video 2.
How Does X ray Tube Works by BiomedEngg
. Source. Describes in particular the rotating cathode method. Interesting observation that this is especially important since the cathode cannot cool quickly due to the vacuum.

Articles by others on the same topic (1)