Year 2 of the mathematics course of the University of Oxford by
Ciro Santilli 35 Updated 2025-04-24 +Created 1970-01-01
Year 3 of the mathematics course of the University of Oxford by
Ciro Santilli 35 Updated 2025-04-24 +Created 1970-01-01
Year 4 of the mathematics course of the University of Oxford by
Ciro Santilli 35 Updated 2025-04-24 +Created 1970-01-01
Sample official source of the term "MMath": www.ox.ac.uk/admissions/undergraduate/courses/course-listing/mathematics
Year 1 of the physics course of the University of Oxford by
Ciro Santilli 35 Updated 2025-04-24 +Created 1970-01-01
Year 2 of the physics course of the University of Oxford by
Ciro Santilli 35 Updated 2025-04-24 +Created 1970-01-01
Year 3 of the physics course of the University of Oxford by
Ciro Santilli 35 Updated 2025-04-24 +Created 1970-01-01
Year 4 of the physics course of the University of Oxford by
Ciro Santilli 35 Updated 2025-04-24 +Created 1970-01-01
Students choose only one of the Cx courses.
Then there are PhDs corresponding to each of them: www.ox.ac.uk/admissions/graduate/courses/mpls/physics
users.ox.ac.uk/~corp0014/B6-lectures.html gives a syllabus:
- Heat capacity in solids, localised harmonic oscillator models (Dulong-Petit law and Einstein model)
- Heat capacity in solids, a model of sound waves (Debye model)
- A gas of classical charged particles (Drude theory)
- A gas of charged fermions (Sommerfeld theory)
- Bonding
- Microscopic theory of vibrations: the 1D monatomic harmonic chain. Mike Glazer's Chainplot program.
- Microscopic theory of vibrations: the 1D diatomic harmonic chain
- Microscopic theory of electrons in solids: the 1D tight-binding chain
- Geometry of solids: crystal structure in real space. VESTA, 3D visualization program for structural models; an example crystal structure database.
- Geometry of solids: real space and reciprocal space. Reciprocal Space teaching and learning package.
- Reciprocal space and scattering. A fun way to discover the world of crystals and their symmetries through diffraction.
- Scattering experiments II
- Scattering experiments III
- Waves in reciprocal space
- Nearly-free electron model
- Band structure and optical properties
- Dynamics of electrons in bands
- Semiconductor devices. Intel's "A History of Innovation"; Moore's Law; From Sand to Circuits.
- Magnetic properties of atoms
- Collective magnetism. A micromagnetic simulation tool, The Object Oriented MicroMagnetic Framework (OOMMF); OOMMF movies of magnetic domains and domain reversal.
- Mean field theory
Problem set dated 2015: users.ox.ac.uk/~corp0014/B6-materials/B6_Problems.pdf Marked by: A. Ardavan and T. Hesjedal. Some more stuff under: users.ox.ac.uk/~corp0014/B6-materials/
The book is the fully commercial The Oxford Solid State Basics.
- qubit.guide/ HTML version od the book.
- github.com/thosgood/qubit.guide. Source code. Written in Bookdown.
- www.arturekert.org/iqis links to the lectures: www.youtube.com/@ArturEkert/playlists Well done in splitting those videos up!
- zhenyucai.com/post/intro_to_qi/
Interesting presentation cycle at Merton BTW: www.arturekert.org/teaching/merton
users.physics.ox.ac.uk/~lvovsky/B3/ contain assorted PDFs from between 2015 and 2019
Syllabus reads:
- Multi-electron atoms: central field approximation, electron configurations, shell structure, residual electrostatic interaction, spin orbit coupling (fine structure).
- Spectra and energy levels: Term symbols, selection rules, X-ray notation, Auger transitions.
- Hyperfine structure; effects of magnetic fields on fine and hyperfine structure. Presumably Zeeman effect.
- Two level system in a classical light field: Rabi oscillations and Ramsey fringes, decaying states; Einstein
- A and B coefficients; homogeneous and inhomogeneous broadening of spectral lines; rate equations.
- Optical absorption and gain: population inversion in 3- and 4-level systems; optical gain cross section; saturated absorption and gain.
Professor in 2000s seems to beBut as of 2023 marked emeritus, so who took over?
- en.wikipedia.org/wiki/Paul_Ewart. He actually fought not to be dismissed by age and won!
- www.physics.ox.ac.uk/our-people/ewart
Ewart is actually religious:This dude is pure trouble for Oxford!
- www.youtube.com/watch?v=aulL-Qa65i0 Paul Ewart, Chance, Science and Spirituality by Faraday Institute for Science and Religion. Oh, he is/was actually chairman of that crap
- www.youtube.com/watch?v=PVX2F4XvGYo Chaos and the Character of God by Prof. Paul Ewart
Undated materials Ewart:
- users.physics.ox.ac.uk/~ewart/index.htm
- users.physics.ox.ac.uk/~ewart/Atomic%20Physics%20lecture%20notes%20C%20port.pdf
- slides: users.physics.ox.ac.uk/~ewart/Atomic%20Physics%20Lecture%20PPT%20slides%201_8.pdf. Also under: www2.physics.ox.ac.uk/sites/default/files/2011-10-19/atomic_physics_lectures_1_8_09_pdf_pdf_18283.pdf. The course was previously B1, they just change the IDs randomly from time to time to fit the B1-7 numbering.
- web.archive.org/web/20170907092044/http://www2.physics.ox.ac.uk/students/course-materials/c3-condensed-matter-major-option it wasn't paywalled in the past up to 2017, but later became. Bastards.
- www2.physics.ox.ac.uk/sites/default/files/page/2011/10/04/c3-intro-vacprobs17-41753.pdf gives the 2016 structure:
- Crystal Structure & Dynamics 10 lectures Dr Roger Johnston
- Band Theory 10 lectures Prof Michael Johnston
- Magnetism 7 lectures Prof Radu Coldea
- Optical Properties 6 lectures Prof Laura Herz
- Superconductivity 7 lectures Dr Peter Leek and Dr Amalia Coldea. web.archive.org/web/20170912021658/http://www2.physics.ox.ac.uk/sites/default/files/page/2011/10/04/cmpsc-handout-2017-41006.pdf
A very honest review of my Oxford University master's degree (theoretical physics at keble college) by alicedoesphysics (2020)
Source. Basically all her courses are from the Mathematical Institute of the University of Oxford, and therefore show up at the Moodle of the Oxford Mathematics Institute of Oxford. Oxford Master of Physics and Philosophy by
Ciro Santilli 35 Updated 2025-04-24 +Created 1970-01-01
Gun-type fission weapons are the simplest approach and they work with Uranium-235 bombs as you can ignite it with just one explosion.
But Gun-type fission weapons don't work with plutonium, and weapon grade Plutonium is cheaper than weapon grade Uranium, so it wasn't much used.
There are unlisted articles, also show them or only show them.