The BSD conjecture states that if your name is long enough, it will always count as two letters on a famous conjecture.
Maybe also insert a joke about BSD Operating Systems if you're into that kind of stuff.
The conjecture states that Equation 1. "BSD conjecture" holds for every elliptic curve over the rational numbers (which is defined by its constants and )
The conjecture, if true, provides a (possibly inefficient) way to calculate the rank of an elliptic curve over the rational numbers, since we can calculate the number of elements of an elliptic curve over a finite field by Schoof's algorithm in polynomial time. So it is just a matter of calculating like that up to some point at which we are quite certain about .
The Wikipedia page of the this conecture is the perfect example of why it is not possible to teach natural sciences on Wikipedia. A million dollar problem, and the page is thoroughly incomprehensible unless you already know everything!
Theoretical framework on which quantum field theories are based, theories based on framework include:so basically the entire Standard Model
The basic idea is that there is a field for each particle particle type.
E.g. in QED, one for the electron and one for the photon: physics.stackexchange.com/questions/166709/are-electron-fields-and-photon-fields-part-of-the-same-field-in-qed.
And then those fields interact with some Lagrangian.
One way to look at QFT is to split it into two parts:Then interwined with those two is the part "OK, how to solve the equations, if they are solvable at all", which is an open problem: Yang-Mills existence and mass gap.
- deriving the Lagrangians of the Standard Model: why do symmetries such as SU(3), SU(2) and U(1) matter in particle physics?s. This is the easier part, since the lagrangians themselves can be understood with not very advanced mathematics, and derived beautifully from symmetry constraints
- the qantization of fields. This is the hard part Ciro Santilli is unable to understand, TODO mathematical formulation of quantum field theory.
There appear to be two main equivalent formulations of quantum field theory:
Mordell's theorem guarantees that the rank (number of elements in the generating set of the group) is always well defined for an elliptic curve over the rational numbers. But as of 2023 there is no known algorithm which calculates the rank of any curve!
It is not even known if there are elliptic curves of every rank or not: Largest known ranks of an elliptic curve over the rational numbers, and it has proven extremely hard to find new ones over time.
TODO list of known values and algorithms? The Birch and Swinnerton-Dyer conjecture would immediately provide a stupid algorithm for it.
Reduction of an elliptic curve over the rational numbers to an elliptic curve over a finite field mod p Updated 2024-12-15 +Created 1970-01-01
This construction takes as input:and it produces an elliptic curve over a finite field of order as output.
- elliptic curve over the rational numbers
- a prime number
The constructions is used in the Birch and Swinnerton-Dyer conjecture.
To do it, we just convert the coefficients and from the Equation "Definition of the elliptic curves" from rational numbers to elements of the finite field.
For example, suppose we have and we are using .
For the denominator , we just use the multiplicative inverse, e.g. supposing we havewhere because , related: math.stackexchange.com/questions/1204034/elliptic-curve-reduction-modulo-p