There are two cases:
- (topological) manifolds
- differential manifolds
Questions: are all compact manifolds / differential manifolds homotopic / diffeomorphic to the sphere in that dimension?
- for topological manifolds: this is a generalization of the Poincaré conjecture.Original problem posed, for topological manifolds.Last to be proven, only the 4-differential manifold case missing as of 2013.Even the truth for all was proven in the 60's!Why is low dimension harder than high dimension?? Surprise!AKA: classification of compact 3-manifolds. The result turned out to be even simpler than compact 2-manifolds: there is only one, and it is equal to the 3-sphere.For dimension two, we know there are infinitely many: classification of closed surfaces
- for differential manifolds:Not true in general. First counter example is . Surprise: what is special about the number 7!?Counter examples are called exotic spheres.Totally unpredictable count table:
Dimension | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | Smooth types | 1 | 1 | 1 | ? | 1 | 1 | 28 | 2 | 8 | 6 | 992 | 1 | 3 | 2 | 16256 | 2 | 16 | 16 | 523264 | 24 | is an open problem, there could even be infinitely many. Again, why are things more complicated in lower dimensions??
Ciro Santilli intends to move his beauty list here little by little: github.com/cirosantilli/mathematics/blob/master/beauty.md
The most beautiful things in mathematics are results that are:
- simple to state but hard to prove:
- Fermat's Last Theorem
- transcendental number conjectures, e.g. is transcendental?
- basically any conjecture involving prime numbers:
- many combinatorial game questions, e.g.:
- surprising results: we had intuitive reasons to believe something as possible or not, but a theorem shatters that conviction and brings us on our knees, sometimes via pathological counter-examples. General surprise themes include:Lists:
- classification of potentially infinite sets like: compact manifolds, etc.
- problems that are more complicated in low dimensions than high like:
- generalized Poincaré conjectures. It is also fun to see how in many cases complexity peaks out at 4 dimensions.
- classification of regular polytopes
- unpredictable magic constants:
- why is the lowest dimension for an exotic sphere 7?
- why is 4 the largest degree of an equation with explicit solution? Abel-Ruffini theorem
- undecidable problems, especially simple to state ones:
- mortal matrix problem
- sharp frontiers between solvable and unsolvable are also cool:
- attempts at determining specific values of the Busy beaver function for Turing machines with a given number of states and symbols
- related to Diophantine equations:
- applications: make life easier and/or modeling some phenomena well, e.g. in physics. See also: explain how to make money with the lesson
Good lists of such problems Lists of mathematical problems.
Whenever Ciro Santilli learns a bit of mathematics, he always wonders to himself:Unfortunately, due to how man books are written, it is not really possible to reach insight without first doing a bit of memorization. The better the book, the more insight is spread out, and less you have to learn before reaching each insight.
Am I achieving insight, or am I just memorizing definitions?