Generalized Poincaré conjecture Updated +Created
There are two cases:
  • (topological) manifolds
  • differential manifolds
Questions: are all compact manifolds / differential manifolds homotopic / diffeomorphic to the sphere in that dimension?
  • for topological manifolds: this is a generalization of the Poincaré conjecture.
    Original problem posed, for topological manifolds.
    Last to be proven, only the 4-differential manifold case missing as of 2013.
    Even the truth for all was proven in the 60's!
    Why is low dimension harder than high dimension?? Surprise!
    AKA: classification of compact 3-manifolds. The result turned out to be even simpler than compact 2-manifolds: there is only one, and it is equal to the 3-sphere.
    For dimension two, we know there are infinitely many: classification of closed surfaces
  • for differential manifolds:
    Not true in general. First counter example is . Surprise: what is special about the number 7!?
    Counter examples are called exotic spheres.
    Totally unpredictable count table:
    DimensionSmooth types
    11
    21
    31
    4?
    51
    61
    728
    82
    98
    106
    11992
    121
    133
    142
    1516256
    162
    1716
    1816
    19523264
    2024
    is an open problem, there could even be infinitely many. Again, why are things more complicated in lower dimensions??
The beauty of mathematics Updated +Created
Ciro Santilli intends to move his beauty list here little by little: github.com/cirosantilli/mathematics/blob/master/beauty.md
The most beautiful things in mathematics are results that are:
Good lists of such problems Lists of mathematical problems.
Whenever Ciro Santilli learns a bit of mathematics, he always wonders to himself:
Am I achieving insight, or am I just memorizing definitions?
Unfortunately, due to how man books are written, it is not really possible to reach insight without first doing a bit of memorization. The better the book, the more insight is spread out, and less you have to learn before reaching each insight.