Einstein notation for partial derivatives Updated +Created
The Einstein summation convention works will with partial derivatives and it is widely used in particle physics.
In particular, the divergence and the Laplacian can be succintly expressed in this notation:
In order to expresse partial derivatives, we must use what Ciro Santilli calls the "partial index partial derivative notation", which refers to variales with indices such as , , , , and instead of the usual letters , and .
Euler-Lagrange equation Updated +Created
Let's start with the one dimensional case. Let the and a Functional defined by a function of three variables :
Then, the Euler-Lagrange equation gives the maxima and minima of the that type of functional. Note that this type of functional is just one very specific type of functional amongst all possible functionals that one might come up with. However, it turns out to be enough to do most of physics, so we are happy with with it.
Given , the Euler-Lagrange equations are a system of ordinary differential equations constructed from that such that the solutions to that system are the maxima/minima.
In the one dimensional case, the system has a single ordinary differential equation:
By and we simply mean "the partial derivative of with respect to its second and third arguments". The notation is a bit confusing at first, but that's all it means.
Therefore, that expression ends up being at most a second order ordinary differential equation where is the unknown, since:
  • the term is a function of
  • the term is a function of . And so it's derivative with respect to time will contain only up to
Now let's think about the multi-dimensional case. Instead of having , we now have . Think about the Lagrangian mechanics motivation of a double pendulum where for a given time we have two angles.
Let's do the 2-dimensional case then. In that case, is going to be a function of 5 variables rather than 3 as in the one dimensional case, and the functional looks like:
This time, the Euler-Lagrange equations are going to be a system of two ordinary differential equations on two unknown functions and of order up to 2 in both variables:
At this point, notation is getting a bit clunky, so people will often condense the vector
or just omit the arguments of entirely:
Video 1.
Calculus of Variations ft. Flammable Maths by vcubingx (2020)
Source.
Schrödinger equation Updated +Created
Experiments explained:
Experiments not explained: those that the Dirac equation explains like:
To get some intuition on the equation on the consequences of the equation, have a look at:
The easiest to understand case of the equation which you must have in mind initially that of the Schrödinger equation for a free one dimensional particle.
Then, with that in mind, the general form of the Schrödinger equation is:
Equation 1.
Schrodinger equation
.
where:
  • is the reduced Planck constant
  • is the wave function
  • is the time
  • is a linear operator called the Hamiltonian. It takes as input a function , and returns another function. This plays a role analogous to the Hamiltonian in classical mechanics: determining it determines what the physical system looks like, and how the system evolves in time, because we can just plug it into the equation and solve it. It basically encodes the total energy and forces of the system.
The argument of could be anything, e.g.:
Note however that there is always a single magical time variable. This is needed in particular because there is a time partial derivative in the equation, so there must be a corresponding time variable in the function. This makes the equation explicitly non-relativistic.
The general Schrödinger equation can be broken up into a trivial time-dependent and a time-independent Schrödinger equation by separation of variables. So in practice, all we need to solve is the slightly simpler time-independent Schrödinger equation, and the full equation comes out as a result.