Internal and spacetime symmetries Updated +Created
The different only shows up for field, not with particles. For fields, there are two types of changes that we can make that can keep the Lagrangian unchanged as mentioned at Physics from Symmetry by Jakob Schwichtenberg (2015) chapter "4.5.2 Noether's Theorem for Field Theories - Spacetime":
From the spacetime theory alone, we can derive the Lagrangian for the free theories for each spin:Then the internal symmetries are what add the interaction part of the Lagrangian, which then completes the Standard Model Lagrangian.
Lorentz group Updated +Created
Subgroup of the Poincaré group without translations. Therefore, in those, the spacetime origin is always fixed.
Or in other words, it is as if two observers had their space and time origins at the exact same place. However, their space axes may be rotated, and one may be at a relative speed to the other to create a Lorentz boost. Note however that if they are at relative speeds to one another, then their axes will immediately stop being at the same location in the next moment of time, so things are only valid infinitesimally in that case.
This group is made up of matrix multiplication alone, no need to add the offset vector: space rotations and Lorentz boost only spin around and bend things around the origin.
One definition: set of all 4x4 matrices that keep the Minkowski inner product, mentioned at Physics from Symmetry by Jakob Schwichtenberg (2015) page 63. This then implies:
Physics from Symmetry by Jakob Schwichtenberg (2015) Updated +Created
This is a good book. It is rather short, very direct, which is a good thing. At some points it is slightly too direct, but to a large extent it gets it right.
The main goal of the book is to basically to build the Standard Model Lagrangian from only initial symmetry considerations, notably the Poincaré group + internal symmetries.
The book doesn't really show how to extract numbers from that Lagrangian, but perhaps that can be pardoned, do one thing and do it well.
Lecture 1 Updated +Created
Bibliography review:
Course outline given:
Non-relativistic QFT is a limit of relativistic QFT, and can be used to describe for example condensed matter physics systems at very low temperature. But it is still very hard to make accurate measurements even in those experiments.
Defines "relativistic" as: "the Lagrangian is symmetric under the Poincaré group".
Mentions that "QFT is hard" because (a finite list follows???):
There are no nontrivial finite-dimensional unitary representations of the Poincaré group.
But I guess that if you fully understand what that means precisely, QTF won't be too hard for you!
Notably, this is stark contrast with rotation symmetry groups (SO(3)) which appears in space rotations present in non-relativistic quantum mechanics.