Computational quantum mechanics Updated +Created
Video 1.
Simulation of the time-dependent Schrodinger equation (JavaScript Animation) by Coding Physics (2019)
Source.
Source code: github.com/CodingPhysics/Schroedinger. One dimensional potentials, non-interacting particles. The code is clean, graphics based on github.com/processing/p5.js, and all maths from scratch. Source organization and comments are typical of numerical code, the anonymous author is was likely a Fortran user in the past.
A potential change patch in sketch.js:
-   potential:     x => 2E+4*Math.pow((4*x - 1)*(4*x - 3),2),
+ potential:     x => 4*Math.pow(x - 0.5, 2),
Video 2.
Quantum Mechanics 5b - Schrödinger Equation II by ViaScience (2013)
Source. 2D non-interacting particle in a box, description says using Scilab and points to source. Has a double slit simulation.
Video 3.
Visualization of Quantum Physics (Quantum Mechanics) by udiprod (2017)
Source. Closed source, but a fantastic visualization and explanation of a 1D free wave packet, including how measurement snaps position to the measured range, position and momentum space and the uncertainty principle.
Matrix mechanics Updated +Created
It is apparently more closely related to the ladder operator method, which is a more algebraic than the more analytical Schrödinger equation.
It appears that this formulation makes the importance of the Poisson bracket clear, and explains why physicists are so obsessed with talking about position and momentum space. This point of view also apparently makes it clearer that quantum mechanics can be seen as a generalization of classical mechanics through the Hamiltonian.
Inward Bound by Abraham Pais (1988) chapter 12 "Quantum mechanics, an essay" part (c) "A chronology" has some ultra brief, but worthwhile mentions of matrix mechanics and the commutator.
The Fourier transform is a bijection in Updated +Created
As mentioned at Section "Plancherel theorem", some people call this part of Plancherel theorem, while others say it is just a corollary.
This is an important fact in quantum mechanics, since it is because of this that it makes sense to talk about position and momentum space as two dual representations of the wave function that contain the exact same amount of information.
Uncertainty principle Updated +Created
The wave equation contains the entire state of a particle.
And a single vector can be represented in many different ways in different basis, and two of those ways happen to be the position and the momentum representations.
More importantly, position and momentum are first and foremost operators associated with observables: the position operator and the momentum operator. And both of their eigenvalue sets form a basis of the Hilbert space according to the spectral theorem.
When you represent a wave equation as a function, you have to say what the variable of the function means. And depending on weather you say "it means position" or "it means momentum", the position and momentum operators will be written differently.
Furthermore, the position and momentum representations are equivalent: one is the Fourier transform of the other: position and momentum space. Remember that notably we can always take the Fourier transform of a function in due to Carleson's theorem.
In precise terms, the uncertainty principle talks about the standard deviation of two measures.
We can visualize the uncertainty principle more intuitively by thinking of a wave function that is a real flat top bump function with a flat top in 1D. We can then change the width of the support, but when we do that, the top goes higher to keep probability equal to 1. The momentum is 0 everywhere, except in the edges of the support. Then: