There are infinitely many prime k-tuples for every admissible tuple.
Generalization of the Twin prime conjecture.
As of 2023, there was no specific admissible tuple for which it had been proven that there infinite of, only bounds of type:But these do not specify which specific tuple, e.g. Yitang Zhang's theorem.
there are infinitely 2-tuple instances with at most a finite bound
Ciro Santilli intends to move his beauty list here little by little: github.com/cirosantilli/mathematics/blob/master/beauty.md
The most beautiful things in mathematics are results that are:
- simple to state but hard to prove:
- Fermat's Last Theorem
- transcendental number conjectures, e.g. is transcendental?
- basically any conjecture involving prime numbers:
- many combinatorial game questions, e.g.:
- surprising results: we had intuitive reasons to believe something as possible or not, but a theorem shatters that conviction and brings us on our knees, sometimes via pathological counter-examples. General surprise themes include:Lists:
- classification of potentially infinite sets like: compact manifolds, etc.
- problems that are more complicated in low dimensions than high like:
- generalized Poincaré conjectures. It is also fun to see how in many cases complexity peaks out at 4 dimensions.
- classification of regular polytopes
- unpredictable magic constants:
- why is the lowest dimension for an exotic sphere 7?
- why is 4 the largest degree of an equation with explicit solution? Abel-Ruffini theorem
- undecidable problems, especially simple to state ones:
- mortal matrix problem
- sharp frontiers between solvable and unsolvable are also cool:
- attempts at determining specific values of the Busy beaver function for Turing machines with a given number of states and symbols
- related to Diophantine equations:
- applications: make life easier and/or modeling some phenomena well, e.g. in physics. See also: explain how to make money with the lesson
Good lists of such problems Lists of mathematical problems.
Whenever Ciro Santilli learns a bit of mathematics, he always wonders to himself:Unfortunately, due to how man books are written, it is not really possible to reach insight without first doing a bit of memorization. The better the book, the more insight is spread out, and less you have to learn before reaching each insight.
Am I achieving insight, or am I just memorizing definitions?
There are infinitely many primes with a neighbor not further apart than 70 million. This was the first such finite bound to be proven, and therefore a major breakthrough.
This implies that for at least one value (or more) below 70 million there are infinitely many repetitions, but we don't know which e.g. we could have infinitely many:or infinitely many:or infinitely many:or infinitely many:but we don't know which of those.
The Prime k-tuple conjecture conjectures that it is all of them.
Also, if 70 million could be reduced down to 2, we would have a proof of the Twin prime conjecture, but this method would only work for (k, k + 2).