Kibble balance Updated +Created
The Kibble balance is so precise and reproducible that it was responsible for the 2019 redefinition of the Kilogram.
Figure 1.
NIST-4 Kibble balance
. Source.
It relies rely on not one, but three macroscopic quantum mechanical effects:
How cool is that! As usual, the advantage of those effects is that they are discrete, and have very fixed values that don't depend either:
  • on the physical dimensions of any apparatus (otherwise fabrication precision would be an issue)
  • small variations of temperature, magnetic field and so on
One downside of using some quantum mechanical effects is that you have to cool everything down to 5K. But that's OK, we've got liquid helium!
The operating principle is something along:
Then, based on all this, you can determine how much the object weights.
Video 1.
How We're Redefining the kg by Veritasium
. Source.
Video 2.
The Kibble Balance, realizing the Kilogram from fundamental constants of nature by Richard Green
. Source. Presented in 2022 for a CENAM seminar, the Mexican metrology institute. The speaker is from the Canadian metrology institute
Video 3.
The Watt balance and redefining the kilogram by National Physical Laboratory
. Source. Nothing much, but fun to hear Kibble talking about his balance in beautiful English before he passed.
Liquid nitrogen Updated +Created
77K. Low enough for "high temperature superconductors" such as yttrium barium copper oxide, but for "low temperature superconductors", you need to go much lower, typically with liquid helium, which is likely much more expensive. TODO by how much?
Video 1.
Where Do You Get Liquid Nitrogen? by The King of Random (2016)
Source. He just goes to a medical gases shop in a local industrial estate and buys 20L for 95 dollars and brings it back on his own Dewar marked 35LD.
Video 2.
Making Liquid Nitrogen From Scratch! by Veritasium (2019)
Source. "From scratch" is perhaps a bit clickbaity, but I'll take it.
Quantum entanglement Updated +Created
Quantum entanglement is often called spooky/surprising/unintuitive, but they key question is to understand why.
To understand that, you have to understand why it is fundamentally impossible for the entangled particle pair be in a predefined state according to experiments done e.g. where one is deterministically yes and the other deterministically down.
In other words, why local hidden-variable theory is not valid.
How to generate entangled particles:
Video 1.
Bell's Theorem: The Quantum Venn Diagram Paradox by minutephysics (2017)
Source.
Contains the clearest Bell test experiment description seen so far.
It clearly describes the photon-based 22.5, 45 degree/85%/15% probability photon polarization experiment and its result conceptually.
It does not mention spontaneous parametric down-conversion but that's what they likely hint at.
Done in Collaboration with 3Blue1Brown.
Question asking further clarification on why the 100/85/50 thing is surprising: physics.stackexchange.com/questions/357039/why-is-the-quantum-venn-diagram-paradox-considered-a-paradox/597982#597982
Video 2.
Bell's Inequality I by ViaScience (2014)
Source.
Video 3.
Quantum Entanglement & Spooky Action at a Distance by Veritasium (2015)
Source. Gives a clear explanation of a thought Bell test experiments with electron spin of electron pairs from photon decay with three 120-degree separated slits. The downside is that he does not clearly describe an experimental setup, it is quite generic.
Video 4.
Quantum Mechanics: Animation explaining quantum physics by Physics Videos by Eugene Khutoryansky (2013)
Source. Usual Eugene, good animations, and not too precise explanations :-) youtu.be/iVpXrbZ4bnU?t=922 describes a conceptual spin entangled electron-positron pair production Stern-Gerlach experiment as a Bell test experiments. The 85% is mentioned, but not explained at all.
Video 5.
Quantum Entanglement: Spooky Action at a Distance by Don Lincoln (2020)
Source. This only has two merits compared to Video 3. "Quantum Entanglement & Spooky Action at a Distance by Veritasium (2015)": it mentions the Aspect et al. (1982) Bell test experiment, and it shows the continuous curve similar to en.wikipedia.org/wiki/File:Bell.svg. But it just does not clearly explain the bell test.
Video 6.
Quantum Entanglement Lab by Scientific American (2013)
Source. The hosts interview Professor Enrique Galvez of Colgate University who shows briefly the optical table setup without great details, and then moves to a whiteboard explanation. Treats the audience as stupid, doesn't say the keywords spontaneous parametric down-conversion and Bell's theorem which they clearly allude to. You can even them showing a two second footage of the professor explaining the rotation experiments and the data for it, but that's all you get.
Single particle double slit experiment Updated +Created
This experiment seems to be really hard to do, and so there aren't many super clear demonstration videos with full experimental setup description out there unfortunately.
For single-photon non-double-slit experiments see: single photon production and detection experiments. Those are basically a pre-requisite to this.
photon experiments:
Non-elementary particle:
  • 2019-10-08: 25,000 Daltons
  • interactive.quantumnano.at/letsgo/ awesome interactive demo that allows you to control many parameters on a lab. Written in Flash unfortunately, in 2015... what a lack of future proofing!
Video 1.
Single Photon Interference by Veritasium (2013)
Source. Claims to do exactly what we want, but does not describe the setup precisely well enough. Notably, does not justify how he knows that single photons are being produced.
Veritasium Updated +Created
Does have some gems worth looking at. But generally always too superficial as can be expected from any self-sufficient YouTubber.
Video 1.
My Life Story by Veritasium (2018)
Source. Basically a don't be a pussy story where he describes how he has always been passionate by both science and film making. Veritasium is a nice guy.