These are neutrons that have reached the thermal equilibrium according to the Maxwell-Boltzmann distribution after having bounced around many times without undergoing neutron capture.
Good fissile material is material that is able to absorb thermal neutrons and continue the reaction, because that's the type of neutron you end up getting the most of.
Some of the most notable ones:
- 1942: Chicago Pile-1: the first human-made nuclear chain reaction.
- 1943: X-10 Graphite Reactor: an intermediate step between the nuclear chain reaction prototype Chicago Pile-1 and the full blown mass production at Hanford site. Located in the Oak Ridge National Laboratory.
- 1944: B Reactor at the Hanford site produced the plutonium used for Trinity and Fat Man
A nuclear reactor made to produce specific isotopes rather than just consume fissile material to produce electrical power. The most notably application being to produce Plutonium-239 for nuclear weapons from Uranium-238 being irradiated from Uranium-235-created fission.
Articles by others on the same topic
Nuclear fission is a nuclear reaction in which the nucleus of an atom splits into two or more smaller nuclei, along with the release of a significant amount of energy. This process typically occurs in heavy elements such as uranium-235 or plutonium-239. The fission process can be initiated by the absorption of a neutron by the nucleus of the fissile atom. When the nucleus absorbs the neutron, it becomes unstable and splits into two smaller nuclei, known as fission fragments.