TODO understand more intuitively how that determines if a reaction happens or not.
At least from the formula we see that:
  • the more exothermic, the more likely it is to occur
  • if the entropy increases, the higher the temperature, the more likely it is to occur
    • otherwise, the lower the temperature the more likely it is to occur
A prototypical example of reaction that is exothermic but does not happen at any temperature is combustion.
Video 1.
Lab 7 - Gibbs Free Energy by MJ Billman (2020)
. Source. Shows the shift of equilibrium due to temperature change with a color change in a HCl CoCl reaction. Unfortunately there are no conclusions because its student's homework.
I think these are the ones where , i.e. enthalpy and entropy push the reaction in different directions. And so we can use temperature to move the Chemical equilibrium back and forward.
Video 1.
Demonstration of a Reversible Reaction by Rugby School Chemistry (2020)
. Source. Hydrated copper(ii) sulfate.

Articles by others on the same topic (1)

See all articles in the same topic