It also has serious applications obviously. www.sympy.org/scipy-2017-codegen-tutorial/ mentions code generation capabilities, which sounds super cool!
Let's start with some basics. fractions:outputs:Note that this is an exact value, it does not get converted to floating-point numbers where precision could be lost!
from sympy import *
sympify(2)/3 + sympify(1)/2
7/6
We can also do everything with symbols:outputs:We can now evaluate that expression object at any time:outputs:
from sympy import *
x, y = symbols('x y')
expr = x/3 + y/2
print(expr)
x/3 + y/2
expr.subs({x: 1, y: 2})
4/3
How about a square root?outputs:so we understand that the value was kept without simplification. And of course:outputs outputs:gives:
x = sqrt(2)
print(x)
sqrt(2)
sqrt(2)**2
2
. Also:sqrt(-1)
I
I
is the imaginary unit. We can use that symbol directly as well, e.g.:I*I
-1
Let's do some trigonometry:gives:and:gives:The exponential also works:gives;
cos(pi)
-1
cos(pi/4)
sqrt(2)/2
exp(I*pi)
-1
Now for some calculus. To find the derivative of the natural logarithm:outputs:Just read that. One over x. Beauty. And now for some integration:outputs:OK.
from sympy import *
x = symbols('x')
print(diff(ln(x), x))
1/x
print(integrate(1/x, x))
log(x)
Let's do some more. Let's solve a simple differential equation:Doing:outputs:which means:To be fair though, it can't do anything crazy, it likely just goes over known patterns that it has solvers for, e.g. if we change it to:it just blows up:Sad.
y''(t) - 2y'(t) + y(t) = sin(t)
from sympy import *
x = symbols('x')
f, g = symbols('f g', cls=Function)
diffeq = Eq(f(x).diff(x, x) - 2*f(x).diff(x) + f(x), sin(x)**4)
print(dsolve(diffeq, f(x)))
Eq(f(x), (C1 + C2*x)*exp(x) + cos(x)/2)
diffeq = Eq(f(x).diff(x, x)**2 + f(x), 0)
NotImplementedError: solve: Cannot solve f(x) + Derivative(f(x), (x, 2))**2
Let's try some polynomial equations:which outputs:which is a not amazingly nice version of the quadratic formula. Let's evaluate with some specific constants after the fact:which outputsLet's see if it handles the quartic equation:Something comes out. It takes up the entire terminal. Naughty. And now let's try to mess with it:and this time it spits out something more magic:Oh well.
from sympy import *
x, a, b, c = symbols('x a b c d e f')
eq = Eq(a*x**2 + b*x + c, 0)
sol = solveset(eq, x)
print(sol)
FiniteSet(-b/(2*a) - sqrt(-4*a*c + b**2)/(2*a), -b/(2*a) + sqrt(-4*a*c + b**2)/(2*a))
sol.subs({a: 1, b: 2, c: 3})
FiniteSet(-1 + sqrt(2)*I, -1 - sqrt(2)*I)
x, a, b, c, d, e, f = symbols('x a b c d e f')
eq = Eq(e*x**4 + d*x**3 + c*x**2 + b*x + a, 0)
solveset(eq, x)
x, a, b, c, d, e, f = symbols('x a b c d e f')
eq = Eq(f*x**5 + e*x**4 + d*x**3 + c*x**2 + b*x + a, 0)
solveset(eq, x)
ConditionSet(x, Eq(a + b*x + c*x**2 + d*x**3 + e*x**4 + f*x**5, 0), Complexes)
Let's try some linear algebra.Let's invert it:outputs:
m = Matrix([[1, 2], [3, 4]])
m**-1
Matrix([
[ -2, 1],
[3/2, -1/2]])
The language all browsers converted to as of 2019, and therefore the easiest one to distribute and most widely implemented programming language.
Hopefully will be killed by WebAssembly one day.
Because JavaScript is a relatively crap/ad-hoc language, it ended up some decent tooling to make up for that, e.g. stuff like linting via ESLint and reformatting through Prettier is much more widespread than in other languages.
JavaScript data structure are also quite a bit anemic, which makes libraries such as lodash incredibly popular. But most of that stuff should be in the stdlib.
Our JavaScript examples can be found at:
- Node.js example: examples that don't interact with any browser feature. We are just testing those on the CLI which is much more convenient.
- JavaScript browser example: examples that interact with browser-specific features, notably the DOM
Likely the best JavaScript 2D game engine as of 2023.Uses Matter.js as a physics engine if enabled. There's also an alternative (in-house?) "arcade" engine: photonstorm.github.io/phaser3-docs/Phaser.Physics.Arcade.ArcadePhysics.html but it appears to be simpler/less robust (but also possibly faster).
- github.com/photonstorm/phaser
- phaser.io/
- phaser.io/examples/v3.85.0/games contains the demo games
Hello world adapted from: github.com/liabru/matter-js/wiki/Getting-started/1d138998f05766dc4de0e44ae2e35d03121bb7f2
Also asked at: stackoverflow.com/questions/28079138/how-to-make-minimal-example-of-matter-js-work/76203103#76203103
Renderer questions:
- follow object on viewport: codepen.io/csims314/pen/goZQvG
- draw text: github.com/liabru/matter-js/issues/321
Node.js does have Node.js
worker_threads
however.The daily ordinary physical world or daily experience, pain, desire and the cycle of endless reincarnation. As opposed to the more elevated goals of spiritual enlightenment and breaking the wheel.
Exampes under nodejs/sequelize/raw:
- nodejs/sequelize/raw/index.js: Sequelize raw query hello world. Ideally one should never use a raw query in a real project. We use raw examples mostly as a SQL tutorial under SQL example, and will not comment on them much further on this section.
Pinned article: Introduction to the OurBigBook Project
Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
Intro to OurBigBook
. Source. We have two killer features:
- topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculusArticles of different users are sorted by upvote within each article page. This feature is a bit like:
- a Wikipedia where each user can have their own version of each article
- a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.Figure 1. Screenshot of the "Derivative" topic page. View it live at: ourbigbook.com/go/topic/derivativeVideo 2. OurBigBook Web topics demo. Source. - local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
- to OurBigBook.com to get awesome multi-user features like topics and likes
- as HTML files to a static website, which you can host yourself for free on many external providers like GitHub Pages, and remain in full control
Figure 2. You can publish local OurBigBook lightweight markup files to either OurBigBook.com or as a static website.Figure 3. Visual Studio Code extension installation.Figure 5. . You can also edit articles on the Web editor without installing anything locally. Video 3. Edit locally and publish demo. Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension. - Infinitely deep tables of contents:
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact